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In a deregulated market, the decision to add generation rests with

private investors. This paper evaluates how generator profits are

affected by increasing wind. Using hourly historical data for the

Irish Single Electricity Market, we simulate future series of elec-

tricity prices, representative plant bids and wind generation. We

estimate a negative correlation between electricity prices and wind

generation. This allows us to determine that increasing wind gen-

eration capacity causes a larger decrease in profits for baseload gas

plants and a smaller decrease for less flexible coal-fuelled plants,

suggesting that investment incentives might not be aligned with

stated environmental goals.
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This paper analyses the effects of increasing wind generation on the incentives

to invest in thermal plants and offers insights on how increased wind generation

affects the wholesale cost of electricity. Continued investment in thermal plants is

critical for the reliability of electricity systems, especially for countries that face

a large renewal of their electricity generation portfolios.

An active and growing literature has analysed the effect of wind on electricity
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prices, for example see Newbery (2010),Perez Arriaga and Batlle (2012), Troy

et al. (2010), and Devitt and Malaguzzi Valeri (2011). Wind generation has the

advantage of relying on free fuel and the disadvantage of depending on a fuel

source that is variable: wind does not blow all the time, and when it blows it is

not constant. Increased wind generation tends to decrease the price of electricity

in any system based on merit orders, since wind-powered plants displace plants

that have positive fuel costs (and positive carbon dioxide emissions). On the other

hand, extensive investments in wind generation have been fostered by subsidies,

which are generally recovered through additional fees tacked on to the final price

of electricity, pushing towards higher electricity prices. Additionally, as wind

generation increases, traditional thermal plants (operated by natural gas, coal

or oil) have to accommodate the fluctuations in wind to meet a fairly inelastic

demand. Thermal plants therefore vary the amount they produce more often in

situations where there is a large variation in the amounts of wind. The result is

that these plants start up (and shut down) more often and are subject to larger

ramping costs (costs incurred when increasing or decreasing generation). This

issue has been analysed in Troy et al. (2010) for Ireland and discussed more in

general in Perez Arriaga and Batlle (2012).

This paper focuses on the implications of these findings for investment incentives

in conventional generation in deregulated systems. In deregulated systems, the

decision to invest in a certain size and type of generating plant rests with investors

and is therefore driven by expected profits. To determine how power plants’

expected profits change as wind generation capacity increases, we compare the

revenue and cost streams of three types of thermal generation plants: a coal

plant, a combined cycle gas turbine plant (CCGT) and an open cycle gas turbine

plant (OCGT). This allows us to assess how electricity systems are likely to

evolve over time and determine if investment in new power plants is likely to

be sustained over time, given current retribution schemes and expected increases

in wind penetration. The biggest challenge we face is the estimation of robust
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parameters that drive how costs and prices evolve with higher wind generation.

Steggals et al. (2011) present an overview of how wind generation may affect

electricity prices and its implications for investment decisions in other generation

technologies. The authors do not quantify the effects, but focus on discussing

potential policies to encourage investment in the presence of wind, with a par-

ticular focus on Great Britain (GB). Traber and Kemfert (2011) consider both

the dampening effect of wind generation on wholesale prices and how they in-

crease the costs for conventional plants. Using a simulation model of Germany’s

electricity plant portfolio, they find that investment in relatively flexible plants

is likely to be suboptimal, since they generate less frequently in the presence of

large amounts of wind. We adopt a different approach in this paper, simulating

many years of future prices, but we obtain a similar result for flexible natural gas

plants: their returns decrease in the presence of more wind. However, Traber and

Kemfert (2011) also conclude that non-flexible coal plants are displaced by wind

over time, whereas our results show that the lack of flexibility might be rewarded

under certain circumstances. Gross et al. (2010) analyze the GB electricity mar-

ket and argue that the incentives to invest depend in part on the risks associated

with fluctuations in electricity prices. Plants that tend to set the marginal price

and are therefore price makers automatically hedge against fluctuations in energy

prices. In our paper we explicitly simulate price fluctuations as a function of wind

generation.

Garcia et al. (2012) are primarily interested in analysing the effects of different

regulatory schemes on the incentives to invest in renewable capacity. Using a

stylised theoretical model, they find that designing incentives to invest in renew-

able capacity without affecting investment in conventional capacity is challenging.

We study a specific electricity system: the Irish Single Electricity Market

(SEM). The SEM encompasses the electricity systems of both the Republic of Ire-

land and Northern Ireland, making it a unique cross-jurisdiction, cross-currency

system. The Irish system also displays a few favorable characteristics from the
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point of view of this study: first, it has limited interconnection with other systems

allowing us to identify the effect of wind more easily. Second, it has experienced a

large increase in installed wind capacity, more than doubling from about 900MW

at the end of 2007 to more than 2000MW at the end of 2011. Third, it is a

compulsory pool system with central dispatch that publishes most of the system

data.

The contribution of renewable energy to overall energy demand has been es-

timated around 5% in 2010 (SEAI, 2011), but Ireland’s target under the Euro-

pean Directive (2009/28/EC) is to achieve a 16% penetration.1 Similar numbers

hold for Northern Ireland, where renewables accounted for about 3% of total en-

ergy consumption in 2009 (calculated from the information presented in DECC,

2011). Wind generation is the largest single source of renewables available in

Ireland.2 The Government plan of 2011 (http://www.taoiseach.gov.ie/eng/Publications/

Publications_Archive/Publications_2011/Programme_forGovernment_2011.pdf) asserts that elec-

tricity generation from renewable sources offers effective ways to reduce the con-

tribution of power generation to Ireland’s greenhouse gas emissions (GHGs). The

same document declares that renewables will have to account for about 40% of

electricity demand if Ireland is to meet its overall targets. Installed wind capacity

is therefore expected to continue rising in the near future.

The rest of the paper is organised as follows. Section 2 describes the SEM

and presents a stylised framework of the setup. Section 3 describes the data

and Sections 4 gives details of the empirical methodology. Section 5 reports the

simulation results and Section 6 concludes.

1The Directive is available at (http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:
2009:140:0016:0062:en:PDF)

2The Irish renewables targets and commitment are outlined in several documents available from the
TSO website (http://www.eirgrid.com/renewables/policyandtargets/irelandandnorthernireland/)
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I. Introducing the SEM and an analytical framework

A. The SEM

In the Irish system, the system marginal price (SMP) is determined by the bid

provided by the marginal plant – defined as shadow price– plus the value of uplift.

Plants are stacked according to their bid, from cheapest to most expensive, and

are called to generate in that order until they produce enough to service existing

demand. The uplift measures any additional startup costs generators have to

be paid to avoid short-run losses. Bids reflect the short run marginal costs of a

plant and include the costs of fuel and carbon dioxide emission permits needed to

generate a megawatthour (MWh) of electricity. On top of the SMP, power plants

also receive capacity payments, designed to help cover capital costs.

Power plants are required to bid their short run marginal cost in line with the

bidding code of practice.3 The Market Monitoring Unit monitors the market to

make sure that generators are bidding within the rules. Extensive system data are

available from the start of SEM, in November 2007. The SEM is a compulsory

pool system, where every generator with a capacity larger than 10MW has to

offer electricity and generation is centrally dispatched. Similarly, all buyers have

to buy from the pool. We are therefore able to simulate our model based on

complete system data. This is different from other studies, such as Nicholson and

Porter (2012) and Woo et al. (2011), that report results for the balancing market

of the Texas ERCOT system, which accounts for only 5 per cent of all electricity

exchanges.4

As a further check of market power, there is a system of future contracts in the

3The bidding code of practice is available on the Commission of Energy Regulation website:
http://www.allislandproject.org/GetAttachment.aspx?id=52931422-c47f-498b-b520-8bf7ef7e956f.

4Both these works focus on the historical estimation of the relation between electricity spot prices
and wind in ERCOT. Nicholson and Porter (2012) show that wind generation is negatively related to the
electricity price, and that wind has a stronger effect on the balancing-energy price during the day than
it does at night. Woo et al. (2011) highlights that rising wind generation tends to reduce spot prices
and amplify the spot-price variance. Both these studies, however, focus on the estimation of the relation
between existing wind and electricity prices, and not on the simulation of the effects of different installed
wind capacities.
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form of contracts for differences (CFD), created to enhance competition between

generators both in the Republic of Ireland and in Northern Ireland. However,

a centrally dispatched market and the regulation that forces generators to bid

their marginal cost limit the incentives to develop forward electricity markets. As

result, the CFD market is not well developed.

The presence of wind on the system raises some interesting questions related

to security of supply. The system cannot rely on wind alone due to its large

and sudden variations and the fact that thermal plants are unable to change

their production instantly. In order to ensure that a sufficient amount of thermal

electricity generation is always available, in any given period the System Operator

(SO) curtails up to 50% of wind capacity. If wind is curtailed and thermal plants

that would not otherwise be called to generate have to produce electricity, they

receive “constraint payments” that cover their cost of generation. A side effect of

being constrained on is that thermal power plants end up increasing or decreasing

generation less frequently. Ramping costs of thermal power plants are therefore

reduced by wind curtailment (and its associated payments).

B. A model of generator returns in the presence of wind

In a deregulated electricity system, any new investment depends on the level of

expected monetary returns to private investors, which in turn depends on market

prices and the costs associated with generation.

The following sections illustrate the main aspects of this investment problem

by providing a stylised example of how wholesale prices are set in a compulsory

pool market with a binding code of conduct. We start by assuming that plants

are infinitely flexible and in section I.C refine the results under the more realistic

assumption that ramping is both costly and cannot occur instantly.

We assume there are three types of generating plants: wind, baseload and

peakload. Firms have capacity constraints. Each can produce a maximum of

Ki MegaWatts (MW) in each period, where i = {H,L,W} indexes technologies,

6



which differ in their costs. Ki represents total installed capacity for a plant

using technology i. Peak plants (indexed by H) generate electricity at the highest

marginal cost (MC), followed by baseload (indexed by L) and wind (indexed by

W), which is assumed to have 0 short-run marginal costs (since wind itself is free).

Given a demand Dt in every period t (which we assume varies over time but

is inelastic to price), and wind generation Wt, with 0 ≥ Wt ≥ KW , the price is

determined as follows:

(1) Pt =



0 if Dt ≤Wt

MCL if Wt < Dt ≤ KL +Wt

MCH if Wt +KL < Dt ≤Wt +KL +KH

Pmax otherwise

Generators are only allowed to bid costs related to their fuel and carbon permit

consumption, which leads to the wholesale price reported in Equation 1. However,

baseload plants incur an additional cost, represented by φ(Dt,Wt), which affects

their profits. This cost arises when a baseload plant has to increase or decrease its

output (often referred to as ramping) to accommodate variations in wind, which

will happen when demand is greater than available wind, but less than the sum

of wind and baseload capacity, and wind varies over time. Put more concisely,

when 0 < Dt −Wt ≤ KL and |∆Wt| > 0, where ∆Wt = Wt −Wt−1. Peaking

plants are designed to be more flexible and therefore do not incur any additional

cost when required to change their output quickly.5

We characterise the cost φ as follows:

5While this is a simplification, costs associated with changes in output are going to be much smaller
for peaking plants than for baseload plants.
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(2) φ(Dt,Wt) =

g · |∆Wt| if 0 < [Dt −Wt] ≤ KL

0 otherwise

where g is a parameter that determines the size of additional ramping costs.

Generators also receive capacity payments. In the SEM, the regulators establish

a capacity ‘pot’ at the beginning of every year and allocate it across periods

in response to the existing margin between available generating capacity and

expected demand. In this analysis we will simplify and assume that they are

allocated equally across all periods.6

For a plant that lasts T periods, generator i receives the following payments,

gross of capital costs over the lifetime of the plant:

(3) πi =

T∑
t=0

(1 + r)−t[Pt − (MCi + φ(Dt,Wt)) + Ct] · qit

where r is the discount rate and Ct are the capacity payments per MW of

available generation paid out at time t.

Based on equations 1 and 3, the expected returns to a generator depend on the

distribution of Dt and Wt. We assume that Dt and Wt are distributed indepen-

dently. To keep the example simple, the distribution of demand is assumed to be

as follows:

(4) Dt =

D̄ with probability p

D with probability 1-p

6The actual allocation methodology is more complex. Part of the allocation is done ex-ante, and part
is ex-post. There is therefore a possibilty of strategic behaviour on the part of firms, but we abstract
from it in this paper.

8



with 0 < KL ≤ D < D̄. Wind, on the other hand, is distributed as a Weibull

distribution, as is common in the literature, 7 with scale parameter α and shape

parameter β. Given the cumulative distribution function of a Weibull distribution,

the following holds:

(5) prob[Wt ≤ Dt −KL] =

1− e−((Dt−KL)/β)α ifDt −KL ≥ 0

0 otherwise

For Dt−KL ≥ 0 the expected value of the additional ramping costs φ is therefore

going to be:

(6) Et(φ) = g · |∆Wt| ·
{
p · [1− e−((D̄−KL)/β)α ] + (1− p) · [1− e−((D−KL)/β)α ]

}

C. A case with non-flexible baseload plants

Now let’s make the example slightly more complex (and somewhat more real-

istic). In the previous section we assumed that the baseload plant will be able to

adapt instantly to wind generation fluctuations. In this section we explore what

happens if the baseload plant is not perfectly flexible. This means that if it has

to produce at high levels in period t+ 1, it must be already operating at time t.

To facilitate the operation of the baseload plant, wind at time t will be curtailed

if needed. Wind curtailment is already taking place in the SEM (Pöyry (2010),

pg.30 and Gorecki (2011)) and in other systems with large amounts of wind (e.g.

Spain. For a review see Rogers et al. (2010)).8

When the plant has to stay on for operational safety reasons, it will not ramp

7See Weisser (2003), Yeh and Wang (2008), Yu and Tuzuner (2008) and Yu and Tuzuner (2009), for
some examples

8For details on the curtailment of wind for security of supply reasons see EirGrid (http://www.
eirgrid.com/media/47958_EG_Summary09.pdf); (http://www.eirgrid.com/media/Annual%20Renewable%
20Report%202010.pdf.

9

http://www.eirgrid.com/media/47958_EG_Summary09.pdf
http://www.eirgrid.com/media/47958_EG_Summary09.pdf
http://www.eirgrid.com/media/Annual%20Renewable%20Report%202010.pdf.
http://www.eirgrid.com/media/Annual%20Renewable%20Report%202010.pdf.


on and off and its associated φ will be equal to zero. We formalise this in the

following example.

If wind and peak plants are not sufficient to meet expected demand at time

t+ 1, or Et[Dt+1 −Wt+1 −KH ] > 0, the baseload plant will be constrained on

at time t. Note that Et is the expectation at time t of events that take place

at future dates. When a plant is constrained on, it receives a payment to cover

its cost of production, but does not receive the electricity market price (which

might be zero, if it is set by wind in that period). As before, firms have capacity

constraints. They can each produce a maximum of Ki MegaWatts in each period.

To simplify the presentation we also assume that for every period t, Dt > KH ,

or that demand is always larger than the capacity of peaking plants.

The price is determined as in equation 1. However, the system operator applies

adjustments to the generation schedule to maintain system reliability. In partic-

ular, if the baseload plant is needed to meet demand in period t+ 1, the system

operator dispatches it in period t as well, even if Dt ≤Wt. This changes the costs

for baseload plants. We will show that φ(·) unambiguously decreases, and there-

fore baseload plant profits unambiguously increase when compared to the results

in section 2.2. The expected value of φ from equation 6 has to be adjusted for the

probability that the plant will be needed at time t + 1 and therefore dispatched

at time t as well, or Et[Dt+1 −Wt+1 −KH ] > 0. More formally, if we define the

updated φ as φ′:

(7) Et(φ
′) = Et(φ)− Et[Dt+1 −Wt+1 −KH ]

As before, Dt and Wt are independently distributed, so we can rewrite the sec-

ond term on the right hand side of Equation 7 as prob
[
Et(Wt+1) < Et(Dt+1)−KH

]
,

which can be measured as the cumulative distribution function of Wt+1 calculated

at Et(Dt+1)−KH . If, as we assumed above, the expected value of Dt+1−KH is
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positive, it is also true that:

(8) Et[Dt+1 −Wt+1 −KH ] > 0

and substituting Equation 8 in 7 we obtain the following result:

(9) Et(φ
′) = Et(φ)− Et[Dt+1 −Wt+1 −KH ] > Et(φ)

thereby proving that Et(φ
′) < Et(φ), where Et(φ) comes from equation 6.

What changes for peaking plant profits? Not much, really. They might be

called on to produce more often, since they are capable of adjusting quickly to

changes in wind generation, but every time they are called to produce out of the

theoretical merit order, they are remunerated exactly for their costs, leaving their

profits unvaried.

II. Data description

Information on daily bids of gas, coal and distillate power plants come from the

market operator’s website (http://www.sem-o.com). We calculate the short run costs

of the different power plants starting from the bid/quantity pairs declared by each

market participant for each day from January 2008 (two months after the market

started, in November 2007). On the basis of the data, we calculate the average

cost of 3 typical power plants: a natural combined cycle gas turbine, a coal and

a distillate oil peaking one.9 Table 1 summarises the data for the average costs

of each representative power plant.

Plants bid their fuel and carbon permit price costs. They incur additional costs

if they have to vary the amount of electricity generated and/or turn on and off.

9In particular, we take Huntstown II as representative of a baseload CCGT natural gas plant, Mon-
eypoint I for coal and Rhode I for oil.
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Table 1—: Summary statistics (2008-2011), €/MWh

Gas Coal Distillate Shadow price
Mean 36 46.7 163.3 49.8
Max 60.1 88.7 224.6 494.6
Min 15 30.3 85.1 0

St. Dev 10.8 10.1 34.6 23.5
Note: The series for the distillate-fuelled plant (an open cycle gas turbine) starts in January 2009 instead
of January 2008 due to availability of historical data.

We refer to these additional costs as cycling costs. When the plant turns on or

off, cycling costs vary depending on the length of time since the last generation

period. The largest costs occur when the plant has not been generating for long

periods and has cooled off completely. In our model we consider only hot starts

(when the plant has been shut down for fewer than 12 hours) and warm starts

(when the plant has been shut down between 12 and 72 hours), as in the past

cold starts (with the plant shut down for longer than 72 hours) have proved rare.

Data on ramping costs have been taken from the All-Island Project website, set

up by the electricity regulator (CER).10

Historical wind generation for the Republic of Ireland and Northern Ireland

comes from EirGrid and SONI respectively.11

We build a series describing the monthly capacity of installed wind based on

system operator files that specify the size and initial connection date of all wind

farms in the Republic of Ireland and Northern Ireland.

III. Methodology

We specify a dynamic system to evaluate generators’ profits over time. Many

studies have simulated the effect of wind by creating unit-commitment models

and varying the amount of wind. In this paper we take the historical data on

10This data come from the 2011 Plexos validation report data.
11EirGrid records data on wind farms that bid into SEM. They estimate that smaller wind farms (i.e.

producing less than 10MW) account for an additional 20% of wind generation and add this amount to
published data.
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electricity prices and costs, use them to estimate parameters, and build a time

series of future costs and revenues based on the simulated series.

The main advantage of our approach lies in its simplicity. Using data on bids

and electricity prices, and making some straightforward hypotheses on the dis-

tribution of wind, we are able to replicate generators’ costs and profits without

having to make explicit assumptions on how the portfolio mix evolves, and espe-

cially without having to model the short-run lumpiness of investment that arises

when a new (large) plant is set up in a relatively small system. This allows us

to isolate the effect of increasing renewables on the system, net of the effect of

lumpy changes in the generation mix.

This exercise is somewhat easier for the SEM as generators are forced to bid

exactly their marginal costs. More complex hypotheses should be considered in

different markets (see Wolak (2001)).

We start by studying the relation between wholesale electricity prices (specif-

ically the shadow price) and wind. This allows us to estimate parameters that

describe how electricity prices evolve as a function of installed wind capacity. The

other component of the SMP, the uplift, is not correlated with wind, as shown in

Di Cosmo and Malaguzzi Valeri (2012).

We then analyse how power plant costs and electricity prices have evolved over

time and use the findings to simulate the profits of potential new thermal power

plants. The power plant costs are defined as the sum of their bids and their

ramping costs, as described in the previous section.

A. Calibration period

We test a number of specifications to check the best fitting process for each

price series. In order to determine whether electricity and energy prices follow

stationary processes we apply both the standard augmented Dickey-Fuller(ADF)

and the Phillips Perron (PP) unit root tests. These tests reject the null hypothesis

of presence of a unit root in the considered sample for all the series with the
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exception of the oil power plant bids.12 However, as argued by Muñoz and Dickey

(2009), financial series can show a (spurious) unit root in the presence of structural

breaks.

Figure 1. : Shadow price, coal, gas and distillate bid prices (2008-2011), €/MWh

(a) shadow price (b) cost for PP with gas

(c) cost for PP with coal (d) cost for PP with distillate

Figure 1 shows an obvious downturn in oil prices and natural gas prices in early

2009, which might have affected the bids of the power plants that use these fuels

as their main input. We therefore test for the presence of structural breaks in

our sample. This allows us to identify an optimal calibration period and estimate

the parameters of the mean reverting process that drives the simulated prices.

The Chow test rejects the null hypothesis of absence of structural breaks in the

shadow price series for the 12th of February 2009, with an F statistic equal to

3454.95. Both Zivot and Andrews (1992) and Baum (2001) have introduced tests

to identify unit roots in the presence of structural breaks. The Clemente and

12For the shadow price series the ADF test statistic is -9.680 with a 1% critical value equals to -3.430.
The PP statistic is -9.827 and the 1% test statistic is equal to -3.960. For the gas-fueled power plant the
ADF test statistic is -2.581. For the coal power plant the ADF is -5.289 and for distillate power plants
the ADF is -3.491.
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Rao test detects the presence of a structural break in the shadow price series on

the 8th of February 2009, whereas the Zivot test finds a break on the 12th of

the same month. All the tests suggest a structural break in a similar period in

February 2009; however these tests reject the hypothesis of the presence of a unit

root in the series. The same tests on the natural gas power plant bids show that

the presence of the structural break cannot be rejected at the 5% level for the

end of December 2008. This is plausible, as the shadow price in the SEM follows

natural gas prices (including the implicit carbon cost of a standard CCGT) fairly

closely, as reported in SEM (2010).13 We therefore estimate the parameters of

the simulated series on the subsamples identified by these tests.

B. Model choice

We first remove the seasonality by applying a moving average technique as

suggested by Weron (2008). We also preprocess the price series eliminating all

the spikes, which are defined as price changes that are farther than two standard

deviations from the average price. After the calibration and simulation processes,

both seasonality and spikes are added back to simulated series, to obtain the final

series.

Oil power plant costs. — Which process best fits the historical data depends

crucially on the series’ properties. As the bids of the oil-fuelled OCGT power

plant follow a persistent (non-stationary) process, we simulate the future values

of this series with a geometric Brownian motion process (GBM thereafter). This

process reflects the non-stationarity of the series, which increases at a constant

rate. A GBM process can be described as

(10) dXt = µXtdt+ σXtdW (t)

13The Clemente and Rao test statistics for gas and coal power plants are -3.684 and -3.341 respectively,
with the test statistic equal to -3.893. We then reject the hypothesis of the presence of a unit root in
these series at the 5% level
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with solution

(11) dxt = (µ+
1

2
σ2)dt+ σdWt

in which xt = log(Xt). We use the MLE estimator to estimate µ and σ, following

Brigo et al. (2007).

Electricity prices, gas and coal power plant costs. — Electricity, coal and

gas bids proved to be stationary in the calibration period and we simulate these

series with mean reverting processes with jumps. To control the size and the

frequency of the jumps, we follow Weron (2008) and model the jump as a Poisson

process of the form Jtdqt where Jt is a (truncated) random variable responsible

for the size of the spike and qt is a Poisson process with intensity λ. The process

can be described as follows

(12) dXt = αXt(θ −Xt)dt+ σXtdWt + Jtdqt

Applying the Ito formula, the process solution can be characterised as follows:

(13) dxt = θ(1− e−αdt) + xt−dte
−αdt + σe−αt

∫ t

t−dt
eαu dWu + Jtdqt

in which xt = log(Xt). We estimate the parameters of this model by standard

OLS.

Modelling the effect of wind. —

Correlation between wind and price. — As mentioned previously, we deter-

mine that the shadow price is stationary. Equation (13) does not account for the

specific effect of wind on the shadow price. We identify the correlation coeffi-

cient between wind and the shadow price using the following relation and hourly
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historical data:

(14) SPSimul = MRPSimul − ρWind,SP ∗WindHist ∗WindCapacityHist

where the simulated electricity price is a function of the mean reverting pro-

cess described in equation (13), historical wind load curve (WindHist) and total

installed wind capacity (WindCapacityHist). We determine the correlation coeffi-

cient between the shadow price and wind (ρWind,SP ) by minimizing the difference

between the simulated series SPSimul and its realised values SPHist , for the

period 2009-2011.

(15) ρWind,SP = argmin(SPHist, SPSimul)

The minimization above leads to ρWind,SP equal to -0.0020. This correlation

parameter is consistent with the one found by Di Cosmo and Malaguzzi Valeri

(2012), who use an econometric analysis of SEM data to estimate the relation

between wind and shadow price.

Wind simulation. — Wind is introduced as a shock that affects the system and

follows a Weibull distribution, the parameters of which are estimated from the

historical wind series. We add a jump to the Weibull process in order to simulate

the effect of wind on the shadow price, which in the recent past has on occasion

reached zero. Wind capacity on the island of Ireland is expected to increase to

up to 6000MW in the next 10 years, as discussed previously. In this paper we

assume that wind capacity will rise from 2000MW to 3000MW within the next 3

years.
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IV. Results

A. Shadow prices and fuel costs

Each power plant runs only if it bids less than (or up to) the shadow price,

since SEM is a merit order dispatch system. We impose this condition in our

simulation.

We simulate three different scenarios in order to assess the effect of wind on

the system. In the first scenario we reproduce the same level of wind capacity

installed in 2011. In the second scenario, wind capacity is set equal to zero.

Without wind generation, we expect generation costs to be lower (as the ramping

costs will be lower) and shadow price and profits to be higher than in the past,

during which the installed capacity of wind was equal to 1889MW on average.

Finally, in the third scenario, we calculate electricity prices and generation costs

when installed wind capacity is equal to 3000MW. In order to simulate power

plant costs and electricity prices correctly, we run 1000 draws of each simulated

process and report the average of these draws.

Scenario 1 (baseline): wind capacity installed on the system from 2009

to 2011. — In this scenario we assume that the capacity of wind installed in

the system is fixed at the average 2011 capacity of 1889MW.This scenario is

designed to provide an appropriate baseline for our analysis. By focusing on the

difference of the results from the baseline, we are able to eliminate any effect of

the simulation methodology and therefore isolate the genuine effect of increasing

wind generation.

We use the correlation coefficient identified by the minimisation process de-

scribed by equation (15). We assume that wind follows a Weibull distribution

with shape and slope parameters estimated from historical data.

Figure 2 shows the results of the shadow price and generation costs (bids) sim-

ulations and Table 2 compares the characteristics of the simulated and historical
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series.

The difference between simulated and historical shadow prices is partially due

to the use of the Weibull distribution to model wind. Although this distribution

is widely used in the literature, the simulated series has a lower variance than

its historical counterpart. The historic mean of the wind distribution is matched

by shifting the whole simulated distribution downward instead of just increasing

the frequency of the downward spikes. As a result, the simulated prices shift

downwards with respect to their historical values.

Note however that the specific distribution chosen to simulate wind affects the

shadow price mean, but not the direction of the changes we measure in the rest

of the analysis.

Figure 2. : Electricity and energy prices (2009-2014), €/MWh

(a) shadow price (b) cost for PP with gas

(c) cost for PP with coal (d) cost for PP with distillate

Note: Historical series in blue, simulated series in red.

The simulated series for natural gas and coal bids have means that are com-

parable to their historical levels, but a slightly higher standard deviation. This

result is typical for this type of studies (see e.g. Benth et al. (2012)). The bid
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of the distillate-fuelled plant is simulated as a non-stationary geometric brown-

ian motion and increases over time, so the mean of the simulations is going to

be larger than the historical base. In Table 2 we compare the simulated period

with the most recent historical month of observations (i.e. 720 observations). As

expected, the simulation bid is larger, due to the ongoing positive trend. If we

focus on the standard deviation in the historical and simulated periods, Table 2

suggests that they are very similar.

Table 2—: Summary statistics: historical and simulated, €/MWh

(a) Shadow price

Simulated Historical ∆
Mean 40.96 41.77 -1.9%

St. Dev 16.91 16.39 3.2%
Skewness 5.35 6.47 -17.3%

(b) Marginal costs : mean

Simulated Historical ∆
Mean Gas 31.04 31.39 -1.1%

Mean Coal 46.26 46.24 0.0%
Mean Distillate 233.31 203.82 14.5%

(c) Marginal costs : standard deviation

Simulated Historical ∆
St.Dev Gas 4.24 8.44 -49.8%

St.Dev Coal 5.79 10.33 -44.0%
St.Dev Distillate 11.50 11.00 4.6%

(d) Marginal costs : skewness

Simulated Historical ∆
Skew Gas 0.67 -0.06 -1147%

Skew Coal 0.62 0.75 -17%
Skew Distillate 0.08 -13.73 -101%

Scenario 2: 3000MW of wind capacity installed in the system. — In this

scenario, we assess the effect of a large investment in wind capacity on the Irish
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system. The wind capacity target in 2020 is close to 6000MW, so we investigate

the effect of wind increasing to 3000MW by 2014.

Table 3 reports the results of our analysis. The presence of wind consistently

reduces average shadow prices. As wind has priority dispatch, the increase in

installed wind capacity reduces the number of profitable hours for thermal power

plants. A problem also arises in terms of system reliability. Baseload thermal

plants need several hours to turn on and shut off. As mentioned earlier, wind

is variable over time. These two facts mean that in order to maintain system

reliability, if a system operator foresees increases in demand at times of low wind

availability, it will have to allow unflexible baseload plants (and specifically coal-

fuelled plants) to continue generation during times of high(er) wind generation.

There are thus two possible cases: i. the system operator exports any excess

wind or curtails it in order to leave coal power plants running at their minimum

stable capacity even at times of high wind generation. In this case, coal plants’

cycling costs will be based on hot start costs; ii. wind is forecast to generate

consistently for more than 8 hours, and coal plants are turned off. In this scenario,

coal plants’ cycling costs will be larger, and equal to their warm start costs.

Wind has a direct effect on the shadow price and an indirect effect on the costs

of thermal power plants. When wind blows, the shadow price decreases, as wind

generation displaces more expensive plants: thermal power plants reduce their

production on average. The indirect effect arises since additional wind increases

power plants’ ramping costs, even if less then proportionally. Troy et al. (2010)

highlight that ramping costs vary for different power plants. In particular, these

costs are quite large for baseload gas and coal power plants, whereas an OCGT

can easily ramp up and ramp down following variations in electricity prices and

wind generation. However, the OCGT is the most expensive power plant on the

system, in terms of marginal cost, and is therefore not an efficient substitute for

baseload plants.

Table 3 compares the characteristics of the series in the 3000MW scenario
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with those defined in the baseline, focusing on the baseload power plants: coal

and CCGT. As expected, Table 3 shows that the shadow price in this scenario

decreases, by 1.4%. Table 3b reports the changes in the ramping costs between

the baseline and the 3000MW scenario for coal and gas plants. Ramping costs

increase, as expected, but minimally. Note that ramping costs do not include

other costs that plants might incur when changing their output, such as wear and

tear costs that tend to be larger for less flexible plants Denny and O’Malley (2009).

Finally Table 3 calculates the change in the number of generating periods for coal

and gas plants respectively. The last line summarises the results by aggregating

the hourly periods into days. It shows that in all scenarios the coal plant generates

for fewer periods than the natural gas plant. However, the number of generation

periods decreases less for coal than for gas plants with increased wind penetration.

It is particularly interesting to observe the behavior of the coal plant, the least

flexible plant we consider. As mentioned earlier, it has technical constraints that

limit its ability to ramp frequently. Given the SEM operating rules discussed in

Section 2.1, when wind sets the shadow price (i.e. there is sufficient wind to meet

all the demand), the System Operator (SO) is still forced to keep less flexible

plants in operation if their output is needed when demand increases and/or wind

dies down. Note that the coal plant runs for a relatively short number of periods

overall, but this is mostly driven by the set of fuel and carbon dioxide simulated

costs.

Scenario 3: no wind capacity installed. — In the scenario without wind gen-

eration the shadow price is higher than in the baseline, as expected. Table 4 shows

that the CCGT power plant’s ramping costs are lower. Somewhat counterintu-

itively, the coal plant’s ramping costs are marginally higher. This result emerges

because in this scenario coal plants generate more often and consequently turn

on and off (slightly) more frequently.

In general the results of this section are the mirror image of the ones presented
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Table 3—: Summary statistics: historical and simulated

(a) Shadow price, €/MWh

Simulated Baseline
Mean 40.38 40.96

St.Dev 16.91 16.91
Skewness 5.34 5.35

(b) Cost changes due to ramping,
€/MWh

Gas Coal
Baseline 31.0425 46.2629

3000MW 31.0533 46.2601
∆ 0.011 - 0.003

(c) Generation periods

Gas Coal
Baseline 19671 6838

3000MW 19196 6557
∆ - 475 - 281

(number of days) -20 -12

for the case where wind capacity is set to 3000MW.

B. Profits

This section compares future estimated profits with their historical levels and

evaluates how investment incentives change as wind generation grows. In order to

investigate the choices made by investors, we determine the necessary conditions

under which a power plant must run. We then add the ramping costs that derive

from generation patterns of each plant and calculate future expected profits for

each representative power plant, assuming a yearly discount rate of 2 per cent

(nominal) per year.

The expected profits do not include fixed costs, but are calculated as the dif-

ference between the electricity price plus capacity payments and power plants’

simulated costs (inclusive of ramping costs), as stated in Equation 6. They should

therefore be interpreted as short-run profits.

We use the yearly average of the capacity payments paid out per MWh of

available plant from 2008 to 2011 to approximate the level of capacity payments

for future years.
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Table 4—: Summary statistics: historical and simulated

(a) Shadow price, €/MWh

Simulated Baseline ∆
Mean 42.03 40.96 2.6%

St.Dev 17.20 16.91 1.7%
Skewness 5.39 5.35 0.9%

(b) Cost changes due to ramping, €/MWh

Gas Plant Coal Plant
Baseline 31.043 46.263

Simulated 31.022 46.269
∆ -0.1% 0.0%

(c) Generation periods

Gas Coal
Gen. periods Baseline 19671 6838

Gen. periods 0MW 20491 7379
∆ 820 541

(number of days) 34 23

We follow a similar procedure to determine uplift costs. Di Cosmo and Malaguzzi Va-

leri (2012) show in their analysis that there is no statistical relation between the

amount of wind generation and uplift costs. We therefore assume here that uplift

costs are fixed and equal to their average between 2008 and 2011.

The present value of the profit stream is calculated according to the following

expression for each plant type:

(16) E(πFuture) =

T∑
i=0

(
1

(1 + r)i

)
πi

in which T is the number of simulation periods, πi represents profits in period i,

and r is the discount rate. We compare these results to the profits realised in the

baseline by the same power plants. Future profits are calculated from 1 January

2012 for approximately 3 years. Presenting the results as differences from the
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simulated baseline allows us to clearly identify the effect of wind.

Comparing 3000MW of wind capacity installed in the system with the base-

line. — When installed wind capacity increases, all power plants face lower

profits. As shown earlier, they face a lower shadow price and incur generation

costs that are (marginally) higher. The other generation revenue sources, capac-

ity payments and uplift, are unaffected by wind. Overall, profits decrease by the

amounts displayed in Table 5. Note that for the thermal plants profits should be

interpreted as the profits for each MW of installed capacity.

Table 5—: Realised and expected profits, present value in €(thousands)/MW

Gas Coal Distillate
Profit Baseline 476.13 282.36 219.56

Profit Future 464.90 278.26 219.59
Difference -2.36% -1.45% 0.01%

Note: All profit streams refer to a 3-year period

The profitability of CCGT gas power plants with respect to the calibration

period decreases by 2.36%, and the profitability of the coal power plant decreases

by 1.45%. The situation does not vary for the distillate-fueled OCGT power plant,

as it is the peaking plant and we assume that its ramping costs are negligible.

Profits of the fairly unflexible coal power plant decrease less than the profits of

the CCGT power plant. This result is driven by the constraints imposed on the

system in order to guarantee its reliability. With more wind, traditional plants

will not generate as much. At the same time, to maintain system reliability,

thermal plants remain on standby in case wind stops blowing.

In our model, we impose that power plants get zero profits for all the periods

in which wind generation is high enough to determine the marginal price, as

during these periods the power plants only receive constraint payments (equal to

their marginal costs). This also means that the least flexible power plant (coal)
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is less affected by the high wind penetration than the CCGT power plants, as

it ramps less due to its ramping inability and low marginal costs. This in turn

limits the losses that this power plant faces in the high wind scenario with resect

to the CCGT plant, although in all the simulation scenarios the coal plant runs

significantly less than the CCGT plant.

Profit changes are likely to be even more significant for larger wind increases

than those studied in this paper. We should however note that the correlation be-

tween shadow price and wind is likely to vary in a non-linear way as installed wind

capacity increases. This implies that applying the current correlation coefficient

to even larger increases in wind would lead to inaccurate results.

Scenario 3: no installed wind. — In the scenario without wind generation

results are symmetric: the shadow price is higher and generation costs are lower.

Thermal power plants therefore realise higher profits, compared to the simulated

baseline.

As the distillate power plant doesn’t benefit from lower ramping costs, its profits

do not vary significantly.

The following Table summarises these results:

Table 6—: Realised and expected profits, present value in €(thousands)/MW

Gas Coal Distillate
Profit Baseline 476.13 282.36 219.56

Profit Future 498.47 290.89 219.58
Difference 4.69% 3.02% 0.01%

Note: All profit streams refer to a 3-year period

V. Conclusions

In this paper we have analysed the effect of increased wind generation on the

incentives to invest in new thermal plants in the context of a deregulated market.
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In a deregulated market, the decision to build new plants rests with private in-

vestors, who will decide on the basis of expected profits. To measure how profits

change with more wind we build three different scenarios in which the installed

capacity of wind varies.

We set the correlation coefficient between wind and shadow price equal to -

0.002, as this is the value that minimizes the difference between the historical

and the simulated shadow price. The profits of the power plants are calculated

by simulated future fuel costs, ramping costs, uplift costs and capacity payments.

We build a baseline where we assume that the wind in the system is the same

as in 2011. The difference in the results between this scenario and the past can be

ascribed to differences introduced by the specific simulation methodologies used

here. In particular the use of the Weibull wind distribution lowers the simulated

shadow price in the baseline with respect to its historical record. Comparing the

increasing wind generation scenario to the baseline allows us to abstract from

these problems.

In the second scenario we consider the effects of 3000MW of installed wind

capacity. This is associated with lower shadow prices, slightly higher generation

costs for baseload plants and consequently lower profits for all generators. The

third scenario considers no wind on the system; this induces higher electricity

prices and lower ramping costs than in the baseline. As a result, power plants’

expected profits are higher.

Interestingly, changes in the natural gas baseload plant’s profits are higher

than the changes for the coal plant. In our analysis this outcome arises because

the system operator keeps the cheaper and less flexible plants in the system to

guarantee supply reliability. However a similar result could hold under different

market rules, for example if plants bid their overall costs, including the wear and

tear costs associated with ramping and switching on and off.
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