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ABSTRACT

We explore how firms grow by adding products. In contrast to most earlier work on the topic, our 
conceptual and empirical framework allows for separate treatment of product innovation (vertical 
differentiation) and diversification (horizontal differentiation). The market context is Japan’s 
cotton spinning industry at the turn of the last century. We find that introducing innovative 
products outside of the previously feasible set involves removing the “supply-side constraint” by 
investing in new types of machines and technologies. This process involves a high degree of 
uncertainty, however, so firms that take steps in this direction tend to first introduce innovative 
products on experimental basis. We show that conducting such experiments is a key to firm 
growth. It not only provides opportunities to capture the market in high-end vertically 
differentiated products when successful, but also facilitates horizontal differentiation of the firm’s 
products within its previous technical capabilities. In long-term outcomes over 20 years, the right 
tail of the firm size distribution becomes dominated by firms that were able to expand in both 
directions: moving first into technologically challenging vertically differentiated products, and 
then later applying their newly acquired high-end technical competence to horizontal expansion 
of their product portfolios.
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1. Introduction 

We now know an important mechanism for firms’ growth is expansion of the scope of 

product varieties they offer. The recent research literature has used multiple frameworks to 

analyze this process theoretically and empirically. One set of approaches emphasizes supply-side 

innovation, where development of new, innovative products delivers the whole (sub)market to 

successful innovators (e.g., Klette and Kortum, 2004; Klepper and Thompson, 2006) or 

productivity determines firms’ range of products (Bernard, Redding, and Schott, 2010). Another 

set focuses on demand-based heterogeneity where firms expand the number of varieties in 

differentiated product markets (e.g., Bernard, Redding, and Schott, 2010; Khandelwal, 2010; 

Hottman, Redding, and Weinstein, 2016). In both cases, firm heterogeneity is captured by 

endowed primitives (productivity, demand appeal, or both) that influence firms’ size, scope, and 

growth rates. Furthermore, this work has typically abstracted from the specific identities of and 

interrelations among a given firm’s product offerings. Instead, product variety scope is typically 

fully summarized by the number of (symmetrically related) products the firm makes. 

However, all product additions are unlikely to be the same in reality. Adding a highly 

innovative product may affect growth differently than adding a product that is more similar to 

those the firm has already been producing. First, the demand and cost effects may be different, 

given that customers’ willingness to substitute and firms’ economies of scope are likely to 

depend on the degree of similarity. Furthermore, and perhaps more importantly in the long run, 

bolder innovation may result in firms acquiring technical and/or marketing knowledge applicable 

to subsequent development of other product varieties. Thus it is not just the number of product 

varieties a firm makes that summarizes its heterogeneity but also the nature and interrelation of 

its differentiated products, such as the vertical distance between new and existing varieties.1 

The process of product variety expansion and firm growth through this channel is not 

well understood. In this paper, we employ rich historical firm-level data from the Japanese cotton 

spinning industry at the turn of the last century to take a step toward opening the “black box” of 

what and how firms do to expand their product varieties and grow. The data, explained in more 

                                         
1 “If a firm previously producing air brakes of various kinds…enters the production of electronic equipment, it is 
certainly diversifying its productive activities…although it may reduce the varieties of air brakes produced. … 
Clearly…for a study of the growth of firms the type of diversification and the reasons for it are of more relevance 
than the ‘amount’ of diversification.” (Penrose, 1959, p. 96) 
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detail below and in the appendix, are uniquely suited to examine growth through product variety 

expansion and its effect on long-term firm outcomes. The key feature of the data is that we can 

distinguish between introductions of products that lie outside the firm’s current technological 

frontier from those that are inside the frontier, and we can directly observe the entrepreneurial 

actions aimed at such introductions. 

We show how innovation along the dimension of vertical differentiation involves facing a 

“supply-side constraint” and a high degree of uncertainty, because it involves installing a new 

type of capital (machines) and using previously unfamiliar inputs and production processes. 

Vertically innovating firms coped with these hurdles by conducting entrepreneurial 

experimentation (Kerr et al., 2014; Cusolito and Maloney, 2018, Ch. 4) and recruiting top-notch 

engineering human capital. We further show how such vertical innovation (resulting from 

experimentation in which we can obtain plausibly exogenous variation) led to later horizontal 

product diversification within the firm’s technology frontier. 

This first-vertical-then-horizontal sequencing shapes firms’ paths of product variety 

expansion and growth. We characterize the specific mechanisms through which firms applied the 

knowledge they gained through vertical innovation in order to spur their horizontal expansions 

and overall growth. Given the relationship and sequencing between vertical and horizontal 

product expansion, it is perhaps not surprising that we also find that firms that did not vertically 

innovate did not do much horizontal product diversification either. Those firms’ (much more 

modest) growth was limited to intensive-margin expansion in sales of their existing products. 

Some aspects of our findings align with past studies, but others provide novel insights 

into the relationship between product variety expansion and firm growth. First, as predicted by 

the oft-used Klette and Kortum (2004) model, more new product introductions are associated 

with higher average firm growth. Beyond this, however, our results highlight the importance of 

accounting for the identity of a newly developed product and its impact on subsequent product 

variety expansion. Vertically differentiated innovations are special. They have spillovers into 

horizontal expansions that do not operate in the reverse. We also show that vertical innovation 

tends to happen not in incremental steps where firms move from more to less familiar products 

(for example as envisaged by Stokey, 1988), but rather through leapfrogging that is followed by 

“bridging” the firm’s existing and newly innovated products (in the style of Callander, 2011). 
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Second, similar to the analyses in which product/firm appeal plays a critical role in 

determining a range of product varieties (Bernard, Redding, and Schott, 2010; Hottman, 

Redding, and Weinstein, 2016), our findings imply that high-growth firms have more product 

flexibility and improve the quality of their products to better respond to demand changes. While 

product/firm appeal is typically treated as a primitive in those studies, our analysis suggests that 

product/firm appeal arises endogenously through experimenting with innovative products. 

Therefore understanding the relationship between product variety expansion and firm growth 

requires incorporating the dynamic aspects of product variety expansion. 

Third, our findings render support for the notion of complementarity between the 

flexibility of the production system and the number of product varieties (Roberts, 2004). Firms 

that did not experiment with technologically challenging innovative products were confined to a 

narrow range of product varieties and infrequent product changeovers. Experimenting firms, on 

the other hand, changed their product portfolios frequently and expanded their overall scope. Our 

findings indicate the role played by vertical product upgrading experimentation in generating 

such complementarity.  

Finally, in our data, only a limited number of firms attempt to push out the technology 

frontier and extend the set of the industry’s feasible offerings. These firms exhibit “awareness” 

in the sense of Karni and Vierø (2013) that sets them apart. In the appendix, we use our data to 

describe the selection process through which firms that push out the technology frontier through 

product innovation discover and harness new growth opportunities. 

The rest of the paper is organized as follows. In the next section we briefly describe our 

data and historical context (more details are provided in the appendix). Section 3 documents 

basic trends in industry and firm growth through product varieties expansion. Sections 4 and 5 

examines the mechanisms through which vertical product upgrading led to product expansion 

through diversification and translated into firm growth. Section 6 probes channels through which 

product innovation may have contributed to subsequent diversification as well as presents some 

robustness checks, while Section 7 concludes and contains further discussion of our findings. 

 

2. Data 

2.1 Data and historical context 
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Our main data come from monthly bulletins (Geppo, 1893-1914) published by Japan’s 

Cotton Spinners Association (hereafter, “Boren” for short, using its Japanese acronym). These 

report, for every Japanese cotton spinning firm, the quantities of each product the firm made that 

month. (See Photo 1 in appendix A.1 for a photocopy of an original of one such report.) The data 

start in May 1893 and extend through December 1914. The industry exhibited phenomenal 

growth during this period (see, e.g., Braguinsky et al., 2015; Figure A1 in appendix A.2 depicts 

the dynamics of industry-wide output and the number of firms in our sample) and caught up with 

the worldwide technological frontier by expanding into high-end products. 

We match this product variety data with a firm-level database that contains monthly 

measures of inputs (spindles in operation, factory operatives, raw cotton) in physical units, firm-

specific output prices (for select counts), wage rates, and the existence and size of industry-wide 

output cuts imposed by the association in periods of slow demand. We aggregate monthly-

frequency data to semi-annual level to correspond to the frequency of observations on important 

supply constraint-related characteristics, such as each firm’s machine capacity (number of 

installed spindles), employment of educated engineers, and board composition available at semi-

annual frequency from shareholders reports and other sources. More details are provided in 

appendix A.1. 

Spun cotton yarn is differentiated by thickness, measured by “count,” which gives the 

length of a type of thread in yards that would weigh one pound. Thus higher counts correspond 

to finer yarn. Higher count yarn is more comfortable to the touch and as such is of higher quality. 

Yarn is also differentiated by the direction in which it is twisted during the spinning process (S-

twist vs. Z-twist). Some yarns are produced by twisting two single-yarn threads together using 

separate equipment called doubling frames. These yarns were translated into Japanese at the time 

as “doubled yarn.”2 Both single and doubled yarn can be processed further through a process 

called gassing, which involves passing yarn quickly through gas burners to burn away fluff and 

make the product glossy. The result is called “gassed yarn.” The demand for various types of 

cotton yarn comes from weavers, and the degree of substitution across yarn varieties in 

                                         
2 In the English term it is “twisted yarn” (see, e.g., Woodhouse, 1921). We will use the Japanese “doubled yarn” 
terminology, in part because it is important for our purposes to distinguish also single yarns by the direction of twist 
as above. There is no distinction between Z- and S-twist in case of doubling because the second twist is always 
applied in the direction opposite to the first twist. 
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producing a particular garment or textile is generally quite low. Our product-by-firm data reports 

count, twist (if single yarn), and doubling or gassing (if done). 

We use the degree of technical difficulty in producing a product as our conceptual and 

empirical measure of vertical product differentiation. This implies finer (thinner) and more 

processed threads are of higher quality. They generally require more versatile and/or specialized 

capital stock (machines designed for thinner counts, doubling and gassing frames, etc.), higher-

quality raw cotton as input, as well as superior technology and production organization. This 

classification is consistent with overall technological trajectories in the Japanese cotton spinning 

industry. As Tables A3-A4 in appendix A.2 show, at the beginning of our sample (10 years after 

the inception of the industry) lower-count yarns—counts 20 and below—were almost entirely 

domestically produced. Users of higher-count yarns still largely relied on imports from Britain 

because of Japanese cotton spinning firms’ lack of technical proficiency. When expanding their 

product varieties, Japanese firms thus faced a problem whether to add a lower-count cotton yarn 

that was easy to produce but faced limited demand, or a higher-count cotton yarn that was 

difficult to produce but potentially faced a much less crowded market. 

The thickest count recorded in the data during our sample is 2.5 (S-twist), and the finest 

is 100 (gassed). The latter doesn’t first appear until January 1903. Product scope evolved as the 

industry did. At the beginning of the sample, industry firms made only about 30 products. This 

grew to over 100 by the end.3 The total number of different products that show up at least once 

in the data from 1893-1914 is 201. To create a set that can be consistently and continuously 

applied throughout the whole sample period, we aggregated these into 35 different product 

varieties––10 varieties (different counts or count ranges) each of S-twist and Z-twist single 

yarns, 10 varieties of doubled yarn, and five varieties of gassed yarn. Our references to a 

“product variety” below regard one of these 35 varieties unless otherwise stated. 

For the purposes of this study, we distinguish between product varieties that belonged to 

the high-end tail of the product variety space and those at the low-end tail. Counts above 20 are 

high-end product varieties, while counts 20 and below are low-end. Among our 35 total product 

varieties, 16 are high-end according to this classification and 19 low-end. We chose this 

                                         
3 In the process, some previously disaggregated data on very thick counts start being reported in a more aggregated 
way (e.g., counts 10 and below are lumped together after a certain point in time), while the data on finer counts 
remain reported in a more disaggregated fashion. 
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threshold because counts from the higher 20s and up were generally impossible to produce 

without specialized machines and inputs designed for those varieties.4 Thus, while demand 

constraints may not have been that important for high-end products (competition was mostly 

from imports, and Japanese textile makers would have been willing to substitute to domestic 

sources at similar FOB prices), supply-side (machine and technology) constraints were very real. 

The demand limitations faced by low-end products, on the other hand, are highlighted by the 

differential treatment they received from high-end varieties during mandatory output cuts 

periods. In periods of slow demand, Boren (the industry association) imposed mandatory output 

cuts on its member firms. However, output of counts above 20 were largely exempt from those 

cuts (see appendix A.3 for details). This differential treatment also allows us to utilize mandatory 

output cuts as an instrumental variable in our firm growth analysis. 

To investigate firms’ product expansion patterns, we also distinguish between new-to-

firm vertical product differentiations aimed at pushing out the firm’s technology frontier (we also 

refer to these as “product upgrades” below) and horizontal differentiation aimed at diversifying 

the product portfolio inside the existing technological frontier (“product diversifications”). While 

closely related to the distinction between high-end and low-end product varieties above, the 

definition of an “upgrade” is stricter than just making a high-end product. A new product 

addition is an upgrade if it a) involves a high-end product and b) the firm must not have 

previously made at scale a product of an even higher count. A new product addition is called a 

“diversification” if, regardless of the new product’s count, the firm had previously made a 

product of a higher count. 

 

2.2 Experimental production and product upgrading 

The notion of experimental product introduction plays an important role in our analysis 

below. We explain how we define it here. It is the addition to the firm’s portfolio of a variety in 

semi-annual period t that is both novel and produced at a modest quantity. More precisely, for a 

                                         
4 As is nearly inevitable with classifications, there is some “gray zone.” In this particular case, some classifications 
adopted in Japan at the time classified single mechanically spun yarn into coarse yarn (counts below 20 as well as 
20-22 count yarn), medium yarn (counts 23-44), and fine yarn (counts 45 and above). Our definition considers both 
medium and fine yarns as high-end, and we also include counts 21 and 22 as such. Reclassifying these two counts as 
low-end products makes no difference to our results. This is perhaps not surprising given the relatively small amount 
of production of counts 21 and 22. While for example 20-count output alone represented roughly 30 percent of the 
industry’s total output during our sample, counts 21 and 22 together accounted on average for only about 1.1 percent 
of industry output. 
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product variety j to be defined as (the beginning of) an experiment at t, it has to satisfy all of the 

following conditions: (i) the firm did not produce variety j in t-1, (ii) variety j accounts for less 

than three percent of the firm’s total output in t, and (iii) variety j had never accounted for more 

than three percent of the firm’s total output in any period before t.5 Thus, a product variety 

remains in the “experimental stage” from introduction (if at a scale below the three-percent 

threshold) until it reaches this threshold for the first time (if at all). Once a firm produces a 

variety at a scale above the threshold, it is no longer considered experimental even if output later 

falls below the threshold again. Note that this definition allows for multiple experiments in the 

same product line. If an experimental product was temporarily discontinued before it reached the 

threshold and is re-introduced again below the threshold after at least one period of non-

production, this is considered a second experiment in that product line. (A further cycle would be 

a third experiment, and so on.) We define an experiment as “successful” if the product rises 

above the three percent threshold after production for a continuous set of periods; otherwise, the 

experiment has “failed.” 

Panel A of Table 1 shows that among the 1,167 firm-product varieties ever produced by a 

firm in our sample, 620 (53.1%) were produced on a scale above three percent of their firms’ 

contemporaneous total output from the outset. The remaining 547 product lines were initially 

“experimental,” and 324 of those never reached the threshold scale.6 Hence, almost 60 percent of 

product lines introduced on experimental basis completely “failed,” that is, never scaled above 

the threshold despite possibly multiple experiments. If we restrict the observations to only new 

product lines that were introduced at some point after the start of our observation period (those 

not in a firm’s production set at the time of entry or at the time of first observation), 62 percent 

of product lines introduced first on experimental basis failed to ever reach the scaling threshold. 

In Panel B we look at all experimental product launches, counting experiments in the 

same product line as separate episodes if the product was dropped, possibly temporarily, without 

being scaled. The fraction of experimental products that did not scale is even higher, at 73 

percent. We can thus see that experimental product development often fails. 

--- Table 1 around here --- 

                                         
5 We tried other reasonable thresholds, such as four percent or two percent, and the results were qualitatively similar. 
See Figure A2 and its discussion in appendix A.4 for the distribution of initial scales of newly introduced products. 
6 Note that if a firm operated only two or three product lines, those lines are less likely be counted as “experimental” 
by construction. Hence, the above probably represents a lower bound on the actual number of experiments. 
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Table 1 also shows that 91 out of 547 all experimental product lines (16.6%) and 76 out 

of 439 new experimental product lines (11.1%) represented upgrades according to our definition 

above. Recall that an experiment is an upgrade if it involves a high-end product that is of a count 

higher than any count the firm had produced above the three percent threshold before. Of these 

upgrade experimental product lines, 45 percent (51 percent for those introduced after the start of 

our observation period) never reached the threshold. For individual upgrade experiments, this 

fraction is even higher at almost 64 percent.  

The small scale that defines an experimental product and the high failure rates indicate 

that product experimentation per se cannot have a large direct effect on firm growth. However, 

experimentation might offer firms valuable technical or marketing knowledge, especially if the 

experiment involves upgrade products that require mastering new technologies. In our analyses 

below we use the cumulative number of upgrade experiments conducted by firm i through time t 

as a proxy for technical knowledge accumulated through experimentation. Similarly, we also 

compute a firm’s cumulative number of (horizontal) product diversification experiments to use 

as an additional regressor in some specifications. 

 

2.3 Machine orders and high-end versus low-end machines 

Japan did not produce its own cotton spinning machines during our sample. It imported 

all machinery from Britain, mostly from Platt Brothers of Oldham (Saxonhouse, 1974). The Platt 

collection in Lancashire archives in Preston, U.K. contains books with orders that cotton 

spinning firms worldwide placed with British textile machine manufacturers (including but not 

limited to Platt Brothers). We collected all the available data on Japanese orders placed from the 

inception of the industry in the early 1880s and until 1914.7 

All machines were custom made. Each order observation contains the placement date, 

shipping dates (usually multiple, as machines were commonly shipped in several installments), 

type of frames ordered (ring, mule, or doubling), number of frames and spindles per frame, the 

range of counts the frames were designed to spin, and other technical characteristics (description 

of cotton input, hank roving to be fed into the machines, rotation speed of the spindles, etc.). 

                                         
7 These orders had been previously examined and processed by Gary Saxonhouse and archived at the ICSPR after he 
passed away (Wright, 2011). However, with no originals, it turned out to be impossible to match ICSPR archived 
data to the Japanese data at the firm level, as most firm names were either missing or incorrectly assigned. We will 
make our newly collected data, including digital photos of the original orders, publicly available. 
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We matched these orders with Japanese archival sources (Enkakukiji, 1901; Sankosho, 

1903-1914; and individual company reports) that provide semiannual firm-level data on the total 

installed capacity: number of spindles, separately by ring, mule, and doubling frames. The details 

of the matching process are described in appendix A.1.6. While we could not match all changes 

in firms’ capacity as recorded by Japanese sources with corresponding orders from British textile 

machine manufacturers, we were able to do so for 105 of the 118 firms in our sample. For these 

firms, we constructed an alternative measure of firm capacity by summing up the number of 

spindles in all orders placed by a given firm, while also taking into account transfers through 

acquisitions, second-hand purchases and sales, decommissioning, and destruction in earthquakes 

and fires. In the end, we accomplished an average match rate of 99 percent between this 

“reconstructed” number of spindles and the number of spindles actually recorded in the 

corresponding firms’ balance sheets. Most of the remaining 13 firms for which we do not have 

orders data were short-lived and/or very small. They constitute only seven percent of all 

observations and just two percent of total industry capacity at any given point in time. The 

bottom line is that we have machine capacity breakdowns for almost all of our sample. We can 

therefore link the technical characteristics of machines to the product varieties produced by firms 

that owned those machines. 

As mentioned, high-end products and low-end products required different types of 

machines. We employ the matched orders data to distinguish between machines designed 

predominantly for high-end products and those for low-end products. More precisely, machines 

are defined to be high-end if their design specifications indicated the ability to spin counts of 23 

or higher. We classify any other machines as low-end.8 We also classify most doubling frames 

(for which our main source of data is Japanese firms’ balance sheets) as high-end machines, with 

the exception of a few cases where firms had no high-end frames and thus applied doubling to 

low-end products. Among the 105 firms in our sample for which we have breakdown of machine 

                                         
8 See Photos 2 and 3 and the corresponding description in appendix A.1. for two specific examples. There is 
ambiguity about some machines ordered early (before the start of our product-variety data), when Japanese firms 
could not yet produce counts above 20. For example, an order placed by Osaka Spinning Company in October 1888 
lists the counts to be spun from 10-20, using Japanese cotton, but “also up to No. 32 if the Japanese decide to mix 
imported cotton with Japanese cotton.” (Osaka Spinning was working to develop Indian imported cotton at the time, 
but actual imports had not started yet.) We classify these machines as high-end due to their versatility, even though 
they were different from subsequent high-end machines specifically designed for high-end products and for use with 
even higher-quality U.S. and Egyptian cotton. That said, re-classifying those early high-end machines as low-end 
instead does not affect our main findings. 
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capacity, 42 had at least one high-end machine at some point in time during our sample period. 

Among these, however, the capacity distribution was highly skewed. The mean number of 

spindles in high-end machines was 36,763, while the median was 16,128. 

 

2.4 Mandatory output cuts as a source of exogenous variation 

As mentioned, the industry association Boren periodically imposed output cuts for low-

end yarns, applied uniformly to all firms, during periods of slow demand. The timing of these 

cuts was not under the control of any given firm.9 Because high-end products were with one 

partial exception exempt from these mandated cuts, such low-end output controls gave firms 

extra incentives to experiment with high-end products. 

In appendix A.3 we present the details of output cuts imposed at different points in time, 

compiled from Shoji (1930). There were two major types of curtailments. In one case, Boren 

would impose a certain number of days in a month as “mandated holidays.” Machines producing 

low-end (count 20 and below) yarn were not allowed to operate on those days. The other type of 

curtailments required a certain fraction of spindling frames used to spin low-end yarn to be idled. 

Compliance was enforced by inspections and by Boren officials securing idled frames by putting 

physical seals on spinning rails (Shoji, 1930, p. 156).10 The fraction of such sealed equipment 

ranged from 20 percent to 40 percent in different periods (Table A6 in the appendix). 

To differentiate these mandatory output curtailments by their severity, we constructed a 

variable which takes a value of zero during months with no curtailments and equals the fraction 

of idled low-end machine spindles (or its equivalent calculated from the number of mandated 

holidays) during months with mandatory output cuts. The average of this variable over a given 

semi-annual observation period, in the third column in Table A6 in the appendix, represents our 

measure of the degree of relative output cuts imposed on low-end products.11 In subsequent 

analysis, we interact this measure with the installation of high-end machines ordered from 

England to obtain an exogenous variation in incentives to conduct upgrade experiments. 

                                         
9 Association voting rules required consensus from all member firms for output cuts to be imposed (Shoji, 1930), so 
it was impossible for any firm (or a coalition thereof) to exploit the policy for unilateral advantage. 
10 Although Shoji (1930) does report some instances of temporary non-compliance by a handful of firms, generally 
speaking, the enforcement appears to have been quite effective. 
11 As can be seen from Table A6, high counts were also affected in 1910-12. Because we are interested in the relative 
stringency of output cuts imposed on low-end products compared to high-end products, we subtracted the fraction of 
high-end output cuts during that period from the fraction of low-end output cuts when constructing our measure. 
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3. Product Variety Expansion Patterns and Firm Growth 

3.1 Product variety expansion 

3.1.1 Decomposition analysis 

Figure 1 plots the dynamics of average firm size as well as the average number of high-

end and low-end product varieties per firm.12 Average varieties per firm is mostly flat from the 

start of our data until about 1899, but after that starts increasing first in high-end product space 

and then in low-end products as well. There is a particularly sharp increase in both product types 

around 1907. From 1907 onward, there is a high correlation between the total number of product 

varieties per firm and average output per firm, with the expansion in the total number of products 

driving almost all industry growth. A salient feature of industry-level product variety expansion 

in Figure 1 is that low-end products are not replaced by high-end products. Rather, a sharp 

increase in the number of high-end product varieties is accompanied by an increase in the 

number of low-end product varieties too. We examine this pattern closely below. 

--- Figure 1 around here --- 

We now employ more formal decomposition analysis to quantify sources of change in the 

number of product varieties per firm we observe in Figure 1. We first decompose the market-

share-weighted average number of products at time t as 

 𝑦𝑦�𝑡𝑡 ≡ ∑ 𝑠𝑠𝑖𝑖𝑡𝑡𝑦𝑦𝑖𝑖𝑡𝑡
𝑁𝑁𝑡𝑡
𝑖𝑖=1 = ∑ 𝑠𝑠𝑖𝑖𝑡𝑡𝑦𝑦�𝑖𝑖∙

𝑁𝑁𝑡𝑡
𝑖𝑖=1 + ∑ 𝑠𝑠𝑖𝑖𝑡𝑡𝑦𝑦�𝑖𝑖𝑡𝑡

𝑁𝑁𝑡𝑡
𝑖𝑖=1 , 

where Nt is the number of firms operating at time t; 𝑦𝑦𝑖𝑖𝑡𝑡 and  𝑠𝑠𝑖𝑖𝑡𝑡 are firm i’s number of products 

and market share at time t, respectively; 𝑦𝑦�𝑖𝑖∙ = 1
𝑇𝑇𝑖𝑖
∑ 𝑦𝑦𝑖𝑖𝑡𝑡
𝑇𝑇𝑖𝑖
𝑡𝑡=1  is the average number of products 

produced by firm i over the whole period it is observed in the sample (Ti), and 𝑦𝑦�𝑖𝑖𝑡𝑡 = 𝑦𝑦𝑖𝑖𝑡𝑡 − 𝑦𝑦�𝑖𝑖∙ 

The change in the weighted average number of products between t and t+1 is then 

𝑦𝑦�𝑡𝑡+1 − 𝑦𝑦�𝑡𝑡 = �� 𝑠𝑠𝑖𝑖𝑡𝑡+1𝑦𝑦�𝑖𝑖∙

𝑁𝑁𝑡𝑡+1

𝑖𝑖=1

−�𝑠𝑠𝑖𝑖𝑡𝑡𝑦𝑦�𝑖𝑖∙

𝑁𝑁𝑡𝑡

𝑖𝑖=1

� + ��𝑠𝑠𝑖𝑖𝑡𝑡(𝑦𝑦�𝑖𝑖𝑡𝑡+1 − 𝑦𝑦�𝑖𝑖𝑡𝑡)
𝑖𝑖∈𝐶𝐶

� + ��𝑦𝑦�𝑖𝑖𝑡𝑡+1(𝑠𝑠𝑖𝑖𝑡𝑡+1 − 𝑠𝑠𝑖𝑖𝑡𝑡)
𝑖𝑖∈𝐶𝐶

�

+ �� 𝑠𝑠𝑖𝑖𝑡𝑡+1𝑦𝑦�𝑖𝑖𝑡𝑡+1
𝑖𝑖∈𝐸𝐸𝑁𝑁

� − �� 𝑠𝑠𝑖𝑖𝑡𝑡𝑦𝑦�𝑖𝑖𝑡𝑡
𝑖𝑖∈𝐸𝐸𝐸𝐸

� 

                                         
12 We employ conversion coefficients similar to those developed in Braguinsky et al. (2015) to aggregate threads of 
various counts into a single, “20-count equivalent” measure of total firm output in physical units. All the results 
below are robust to using machine inputs (number of spindles in operation) or labor inputs (number of worker-
hours) as alternative measures of firm size. 
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where C, EN, and EX indicate continuing firms, entrants, and exiting firms, respectively.  

We call the first term on the right hand side the “composition effect,” capturing the 

change in the average number of products due to the difference in the composition of firms 

between t and t+1. This measures the difference, over their lifetimes, in the average number of 

products of new entrants versus exiting firms. The second term is the “expansion effect” of 

continuing firms. It captures within-firm changes in their numbers of products between t and t+1, 

holding their base period market share fixed. The third term is the “allocation effect,” measuring 

the contribution of changes in the market shares of continuing firms between t and t+1. Finally, 

the fourth and fifth terms measure the contribution of entrants and exiting firms, respectively, 

coming from deviations in the first observation (for entrants) and the last observation (for exiting 

firms) from their own long-term average number of products. A positive (negative) number in 

the fourth term means that the average number of products of entrants is greater (less) at the time 

of entry than in later periods of their operation. A positive (negative) number in the fifth term 

means that the average number of products of exiting firms is greater (less) at the time right 

before they exit than in earlier periods of their operation. We label the sum of the last four terms 

in the decomposition the “overall within effect.” 

Table 2 presents the results. The main takeaways are summarized as follows. First, the 

decomposition in Panel A, where all the product categories in the data are used, shows that the 

total increase in the average number of products per firm between 1893 and 1914 was 8.98. Of 

this, the within-effect accounts for a greater share (5.63) than the composition effect (3.35). 

However, when we divide the sample into two subperiods before and after the spike in product 

varieties in 1907, there are stark differences. From 1893-1906, the overall increase of 2.53 

products per firm is more modest, and the composition effect (1.63) contributes more to the total 

change in the number of product varieties than the within effect (0.90). Decomposition of the 

within effect also shows that it is entirely driven by allocation—changes in market shares. We 

see a complete reversal from 1907-1914. While the absolute magnitude of the composition effect 

remains roughly the same (1.73), the within effect (4.73) becomes a dominant contributor to the 

total growth in average products per firm of 6.45. Also, almost all of this within effect now 

comes from the expansion of continuing firms, while the allocation effect is much smaller. 

Thus, during the first subperiod (1893-1906), which is the period of large-scale entry, 

followed by a shakeout and initial industry consolidation, the growth in number of product 
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varieties was driven by new entry and by increasing market shares of continuing firms that 

produced more product varieties. In the second subperiod (1907-1914), on the other hand, while 

new entry still contributed to the growth in the number of product varieties at about the same 

magnitude as before, there was an explosion in the number of product varieties produced by 

continuing firms. This growth came to dominate the overall expansion of the number of product 

varieties produced by the industry. Decomposition separately by high- and low-end products in 

Panels B and C of Table 2 presents essentially the same picture, although with some nuanced 

differences between them. 

--- Table 2 around here --- 

Thus, decomposition analysis shows that the big boost received by industry growth after 

1907 from the expansion of the number of product varieties seen in Figure 1 resulted almost 

entirely from an increase in the number of both high-end and low-end products produced within 

continuing firms.  

The findings from the decomposition analysis raise questions. Were the firms whose 

expansion drove the growth in high-end and low-end product varieties the same or different 

firms? To the extent that they were the same firms, did they first expand low-end product 

varieties and then move on to high-end product varieties, as implied by the learning-by-doing 

theory of Stokey (1988), for example? Or, did they first introduce high-end product varieties and 

then expand also their low-end product offerings? 

 

3.1.2 Same or different firms? 

Table A7 in appendix A.5 shows that as high-end machine capacity increases from 

virtually zero at the start of our sample, it spreads out across firms of different sizes but remains 

heavily concentrated among the largest firms. Perhaps not surprisingly, this leads to the same 

pattern in the number of high-end product varieties. More interestingly, however, the number of 

low-end product varieties (which do not require high-end machines for their production) also 

becomes heavily concentrated in the same set of firms. Thus the same firms accounted for the 

expansion of both high-end and low-end product varieties that we saw in the decomposition 

analysis. Moreover, those were also the firms that invested in high-end machines and grew to 

become the top firms in the industry (see also Table A7 in the appendix). This leads to obvious 

questions about the relationships between product upgrading and diversification and how these 
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might translate into firm growth. This is what we explore next. 

 

3.2 Upgrade experiments and product varieties expansion  

As seen above, almost two-thirds of all new products introduced by firms were initially 

launched on a small scale (experimental production), and 60-70 percent of those experiments did 

not result in scaling. Most experiments could therefore not directly contribute to the proliferation 

of new product varieties. It turns out, nevertheless, that upgrade (although not diversification) 

experiments did contribute to product varieties expansion. We establish this fact here, and we 

examine the mechanisms behind it in the next section. More specifically, we show how 

accumulated past upgrade experiments are tied to expansion in product varieties of all types, 

even those not directly targeted by such experiments.  

The estimation equation is: 

𝑦𝑦𝑖𝑖𝑡𝑡 = 𝛼𝛼 + 𝛽𝛽1𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑐𝑐𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢_𝑢𝑢𝑒𝑒𝑢𝑢𝑖𝑖𝑡𝑡−1 + 𝛽𝛽2𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑢𝑢𝑑𝑑𝑑𝑑𝑢𝑢𝑢𝑢𝑠𝑠_𝑢𝑢𝑒𝑒𝑢𝑢𝑖𝑖𝑡𝑡−1 + 𝛽𝛽3𝑋𝑋𝑖𝑖𝑡𝑡−1 + 

                       𝛾𝛾𝑖𝑖 + 𝛿𝛿𝑡𝑡 + 𝜁𝜁𝜏𝜏 + 𝜀𝜀𝑖𝑖𝑡𝑡,       (1) 

where 𝑦𝑦𝑖𝑖𝑡𝑡 it is the change from t-1 to t in the total number of products produced by firm i, and 

separately in the number of high-end and low-end products; 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑐𝑐𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢_𝑢𝑢𝑒𝑒𝑢𝑢𝑖𝑖𝑡𝑡−1 and 

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑢𝑢𝑑𝑑𝑑𝑑𝑢𝑢𝑢𝑢𝑠𝑠_𝑢𝑢𝑒𝑒𝑢𝑢𝑖𝑖𝑡𝑡−1, represent the cumulative numbers of upgrade and diversification 

experiments conducted by firm i by time t-1, respectively; 𝑋𝑋𝑖𝑖𝑡𝑡−1 is a vector of controls, and 𝜀𝜀𝑖𝑖𝑡𝑡 is 

the error term. We include firm fixed effects 𝛾𝛾𝑖𝑖 and semi-annual period fixed effects 𝛿𝛿𝑡𝑡. In 

addition, we include a set of dummies 𝜁𝜁𝜏𝜏 to nonparametrically control the number of periods 𝜏𝜏 

the firm has been in the sample (the first equal to one for every firm’s earliest period in the 

sample, the second equal to one for firms’ second periods, and so on). We include these to ensure 

that our key variables of interest, the cumulative numbers of upgrade and diversification 

experiments, capture accumulated past experience with experiments and not simply how long the 

firm has happened to be in the data. We exclude each firm’s first and last periods because they 

often cover less than a full six months.13 

The results, shown in Table 3, make clear that a firm’s past upgrade product experiments, 

but not diversification experiments, are tied to growth in its number of products of all types (total 

as well as low- and high-end specifically). Columns (1)-(3) include the number of products (all, 

                                         
13 We do the same in all subsequent regressions below, unless explicitly stated otherwise. 
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high-end and low-end, respectively) produced by firm i at time t-1 as a control in 𝑋𝑋𝑖𝑖𝑡𝑡−1.14 An 

additional past upgrade experiment is associated with adding product varieties of all types in the 

following period. To give some sense of the magnitude of this relationship, conditional on past 

upgrade experiments being positive, the 25th-percentile of cumulative past upgrade experiments 

is one, while the 75th-percentile is five experiments. Hence, the interquartile differential is tied to 

about 1.7 (0.43x4) more new product varieties added during any given semi-annual period. 

It is worth emphasizing that past upgrade experiments are associated with not just future 

growth of high-end products, but low-end products as well. Indeed, the magnitudes of the 

experiment-associated high- and low-end product growth are similar. Because upgrade 

experiments never involve low-end products by construction, the results in column (3) suggest 

there may be substantial spillovers from firms experimenting with product upgrading to their 

abilities to increase the number of seemingly unrelated low-end products.  

--- Table 3 around here --- 

Columns (4)-(6) of Table 3 include additional controls: an indicator for the firm installing 

new machines (whether high-end or low-end) during the observation period, and another 

indicator equaling one if the firm employed a university-educated engineer or had a board 

member who was a prominent cotton yarn or garments merchant (as a proxy for “connectedness” 

to markets; see Braguinsky et al., 2015). The point estimates on past upgrade experiments fall 

slightly but retain economic and statistical significance. 

Among the covariates, high-end machine installation has a positive, economically large 

and statistically significant association with both high-end and low-end product varieties 

expansion. Other things equal, expanding high-end machine capacity relates to an average 

increase of new product introductions of 0.66 products per period, about 40 percent (0.27/0.66) 

of which are new high-end products and the remainder new low-end products. The tie between 

growth in low-end products and high-end machine expansion (which in principle could be used 

                                         
14 The total number of available product varieties (and hence the potential number of products any firm can produce) 
is bounded from above in our data, so we need to control for the level of product diversification already attained. To 
check if the estimation results are sensitive to the potential “subtraction bias” (inclusion of the lagged number of 
products, which also enters the dependent variable with the minus sign, as an explanatory variable), we conducted an 
ordered logit estimation with the dependent variable being a dummy taking values of minus 1, zero, and plus one if 
the firm respectively reduced, did not change, or increased the number of product varieties from t-1 to t, The results 
were very similar; details are available upon request. 
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for low-end production but rarely were because of their expense) is more suggestive evidence 

that pushing the technology frontier helps firms grow within the frontier as well. 

Low-end machine expansions, on the other hand, do not exhibit patterns characteristic of 

spillovers. They are not statistically related to the expansion of high-end product varieties. And 

while they do accompany growth in low-end products, the magnitude of this relationship is about 

half that of the relation with high-end machine expansion. 

It is also worth noting that the relationships between high-end machine expansion and 

product growth holds even conditioning on past upgrade experiments. As we will see 

immediately below (Tables 5 and 6), however, adoption and expansion of high-end machines 

(but not of low-end machines) are nevertheless significantly related to additional 

experimentation. 

 
4. Exploration of Mechanisms 

The relationship between pushing the technology boundary and subsequent product 

variety expansion presents a puzzle. Why is it that firms which grow by expanding their product 

varieties are those that first introduce new innovative and technically challenging products on an 

experimental basis? As mentioned, most upgrading experiments fail to scale up and to stay in a 

firm’s portfolio. Thus the direct effect of upgrade experiments on the expansion of product 

varieties is limited, and it has no direct effect whatsoever on the expansion of low-end product 

varieties. We seek to address this puzzle in the analyses in this section. 

 

4.1 High-end machines, market ties, engineering human capital, and product experiments 

High-end machines were a prerequisite for venturing into the high-end product space, and 

having such machines was indeed associated with more product upgrade experiments. The 

decision to introduce high-end machines is a costly investment decision, so firms select into 

doing so. We take installations as given for now, but later we employ an instrument based on 

industry-wide mandatory output cuts of low-end products as a source of exogenous variation in 

incentives to conduct upgrade experiments. 

At the beginning of our sample, Japanese mills were trying to catch up to the world 

technology frontier. Delivering high-end products was a difficult task entailing much 

uncertainty. In addition to procuring high-end machines, clearing this hurdle required a 
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combination of engineering talent, market knowledge, and product experimentation.15 In Table 4 

we present summary statistics showing the relationships between having high-end machines and 

a number of firm-level outcomes: employment of university-educated engineers; the presence of 

cotton yarn and garments merchants (hereafter, “merchants” for short) on firms’ boards of 

executives, as a proxy for market knowledge or “market ties”; and product experimentation. 

Firms that installed high-end machines had merchants as their board members in 71 

percent of the cases compared to 57 percent for other firms (a difference that is statistically 

significant). These firms also employed 1.6 university-educated engineers on average, ten times 

the level of firms that did not. A similar order-of-magnitude difference exists for the number of 

second-tier educated engineers—graduates from technical colleges, corresponding to today’s 

Institutes of Technology. Thus, adoption of high-end machines was closely related to superior 

market ties and engineering human capital. 

The numbers in Table 4 also reflect that firms that had installed high-end machines 

conducted experimental product introductions at a much higher frequency, introducing an 

average of 1.2 products per year (0.6 per semiannual observation), as opposed to 0.5 products per 

year for those without high-end machines. In contrast, as can be seen from the bottom three rows 

of the table, there was no difference in the frequency with which firms introduced new products 

above the three percent threshold. Thus, high-end machines facilitated experimentation with new 

products before scaling up in ways low-end machines could not, or at the very least, did not. 

Notably, while high-end machines were unsurprisingly associated with a much higher 

frequency of product upgrade experiments, they were also tied to a doubled propensity to 

conduct horizontal product diversification experiments. (The opposite is true regarding the 

propensity to introduce new products on a non-experimental basis, per the bottom rows.) Once 

again, because high-end machines were not directly relevant to low-end products, this is 

consistent with adoption of high-end machines having spillover effects on all types of new 

product experimentation. Conditional on conducting experiments, firms with high-end machines 

                                         
15 For example, Nihon Spinning, the first firm to produce gassed yarn in Japan, ordered its first machines from Platt 
Brothers in April 1894. Henry Ainley, a British engineer who met with three of Nihon Spinning’s founders at the 
time, expressed surprise that the Japanese were even contemplating producing gassed yarn at that stage (Geppo, 
1893, No. 5, p. 89). Indeed, it took two full years for the firm to actually start production. In-between, Japanese 
engineers, together with two British advisers who came from England to help, had to resolve a host of technological 
issues. These ranged from finding ways to procure heat-resistant brick in Japan to dealing with drafts that caused 
burners to flutter and damage the thread, all the while fighting suffocating heat inside gassing chambers (Kinugawa, 
1964, Vol. 7, p. 13). See also the example of Amagasaki Spinning company detailed in the appendix. 
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had a lower fraction of successful experiments (new experimental product introductions that 

were subsequently scaled). Those with high-end machines scaled 22 percent of their 

experimental products compared to 35 percent (of a much smaller number) of experimental 

products of firms without high-end machines. This difference is economically and statistically 

significant and may reflect both higher uncertainty faced by high-end machine users and the fact 

that they derived useful knowledge from experimentation regardless of the outcome. 

--- Table 4 around here --- 

 

4.2 Predictors of vertical upgrade experiments 

We now examine more closely the complementary factors to upgrade experimentation. In 

Panel A of Table 5 we present the results of regressions where the dependent variable is the 

number of upgrade experiments started by a firm in a given semi-annual period. The explanatory 

variables of interest are whether the firm had installed high-end machines, whether it expanded 

its high-end (low-end) machine capacity, the presence of merchants on firms’ boards of 

executives (again as a proxy for market ties), and whether the firm employed a degreed engineer. 

We also control for firm age and semi-annual time dummies. Because the dependent variable is a 

count variable consisting of zeroes and small integers, we employ Poisson regression estimates. 

(We obtained similar results using negative binomial regression, as well as OLS.) 

In the estimation results in column (1), the coefficient on the indicator for having high-

end machines indicates that high-end machines were associated with starting about 1.1 additional 

upgrade experiments per semi-annual period. In column (2) we look at the roles of high- and 

low-end machine capacity expansions. Adding high-end machines, but not low-end machines, 

was associated with an additional 1.5 new upgrade experiments per period. Thus, both the 

presence and expansion of high-end machines were associated with firms experimenting more 

with vertically upgraded products. Repeating the same exercise on the subsample of firms that 

already had high-end machines in column (5) yields a coefficient that implies about 1.1 new 

upgrade experiments upon high-end machines expansions, a number that despite the much 

smaller number of observations is still statistically significant. 

In column (3) we look at engineering human capital and market ties. Firms that employed 

a university-educated engineer started a marginally significant 0.7 more upgrade experiments per 

period. The presence of a merchant on the board of executives led on average to an additional 1.5 
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upgrade experiments per semi-annual period. Thus our proxy for having market ties is related to 

twice the increment to experimentation levels as is having a university-educated engineer, and it 

has a magnitude similar to high-end machine capacity expansions. This regression uses across-

firm variation, so these results are not directly comparable to the firm-fixed-effects estimations in 

Table 3 above. However, it is worth noting the contrast between the high correlation between 

having market ties and upgrade experimentation and its lack of a significant relationship with 

product varieties expansion.16 In other words, merchants on executive boards accompanied 

experimentation, but they played little explanatory role in subsequent product varieties expansion 

and, as we will see below, overall firm growth. This suggests that market ties were important in 

helping firms cope with initial market uncertainty when introducing unfamiliar products on 

experimental basis, but subsequent expansion was less dependent on such ties and instead relied 

more on the experience and technological knowledge embodied in engineers.17  

--- Table 5 around here ---  

The relationships in columns (1)-(3) and (5) may reflect the influence of third factors that 

jointly determine both the explanatory variables and experimentation. To gain exogenous 

variation in experimentation for our causal analysis below, we construct an instrument by 

interacting an indicator for contemporaneous installment of new high-end machines with an 

indicator for the imposition of mandatory output cuts for low-end products, as described above in 

Section 2.4. One might be concerned that high-end installations are endogenous to 

experimentation; however, by using machinery that started operating only in period t to construct 

the instrument, we are taking advantage of the considerable lags between ordering, delivery, and 

installation of machinery in the industry. The minimum order-to-installation lag is one year and 

could often be longer, for random reasons; see Saxonhouse (1974). Therefore it is unlikely that 

firms would—anticipating a fall in demand and a resulting mandated output cut at least one year 

in the future—place a machine order with the intention of it arriving and becoming operational 

coincident with the output cut. Furthermore, Boren imposed mandatory low-end product output 

                                         
16 Regression specifications in Table 3 include firm fixed effects because we are interested in examining within-firm 
impact of knowledge accumulation, as proxied by cumulative past upgrade experiments. Nevertheless, if we drop firm 
fixed effects from these specifications, the coefficient on the indicator for having a merchant as a board member is 
still about half the magnitude of the coefficient on the indicator for having a university-educated engineer, in sharp 
contrast to the estimation results in Table 5. 
17 As discussed below and in appendix A.11, the presence of merchants on executive boards was also closely related 
to the experiments leading to the selection of firms into purchasing high-end machines in the first place. 
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cuts in the wake of big, unexpected demand shocks like the Boxer rebellion of 1900 or the stock 

market crash of 1907. We believe it was nearly impossible to time the arrival of the new high-

end machines to coincide with the imposition of output cuts, even if firms were to consider doing 

so.18 The interaction of the mandated output cuts with high-end machine installations gives us an 

instrument for upgrade experimentation that varies both intertemporally and across firms. 

In columns (4) and (6) of Table 5, we include this interaction term. As can be seen, the 

instrument is significantly related to firms starting more upgrade experiments. The effect is 

especially large in the subsample of firms that already have high-end machines. Among those 

firms, the high-end machine capacity expansions that coincided with mandatory output cuts led 

to those firms starting 1.7 new experiments in such periods. 

 

4.3 Factors in diversifying experiments and selection into high-end machine adoption 

Panel B of Table 5 shows the results of running the same specifications as in Panel A, 

except with the dependent variable being the number of diversification experiments started in a 

given period. With the notable exception of the interaction term capturing the arrival of new 

high-end machines amidst mandatory output cut periods (which of course affects firms’ 

incentives to start product upgrading but not product diversification experiments), the factors that 

explain the start of diversification experiments are remarkably similar to those for product 

upgrade experiments in Panel A. In particular, firms with high-end machines start on average 

about one more diversification experiment in each period than do firms with no high-end 

machines. And once again high-end, but not low-end, machine capacity expansions are 

associated with more experimentation. This conforms to the results in Table 3, which showed 

low-end product expansion was related to the same factors (cumulative past upgrade experiments 

and high-end machine expansion) as high-end product expansion. 

One notable difference between the estimation results presented in Panels A and B of 

Table 5 is a more prominent role played by engineers compared to merchants in explaining 

diversification experiments as opposed to upgrade experiments. This is again consistent with the 

interpretation of market ties playing a bigger role in the initial push to expand the technology 

frontier, followed by accumulation of technological knowledge playing a key role in firm 

                                         
18 High-end machine expansion also happened through acquisitions. There too it took at least a year, often more, to 
consummate an acquisition. 
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expansion through both high- and low-end product additions. As we will see in the next section, 

the interaction between accumulated past upgrade experimentation with the expansion of the 

number of low-end product varieties is a key determinant of firm output scale growth. 

In appendix A.6 we examine how firms select into procuring high-end machines. A key 

finding, echoing what we already saw after the investment decision had already been made, is 

that among the firms that did not yet have high-end machines, those that would later purchase 

them—“future adopters”—tended to already conduct more experiments and have more 

merchants as board members than firms that never installed high-end machines (see Table A10, 

Panel A, in Appendix A.6). Future adopters were somewhat larger in terms of output (measured 

using our 20-count equivalent physical units), but they were neither more diversified nor more 

likely to expand their low-end machine capacity prior to adopting high-end machines. Thus once 

again we see that diversification and expansion of low-end machines happened after firms 

successfully expanded into the high-end product space, not before. More selection analysis and 

discussion is in Appendix A.6. 

 
5. Product upgrading, product diversification and firm growth 

We have established that the relationship between pushing the technology boundary and 

subsequent product variety expansion is mediated by experiments with vertical product 

upgrading, followed by application of the knowledge gained to diversifying product offerings at 

the low end of the product spectrum. In this section, we examine if these factors also translated 

into higher growth of total output. Specifically, we look at how the cumulative number of past 

upgrade experiments and their interaction with the fraction of low-end products in the firm’s 

product portfolio affect the firm’s subsequent output growth. The basic estimating equation is: 

𝑐𝑐𝑙𝑙(𝑦𝑦𝑖𝑖𝑡𝑡+1) − 𝑐𝑐𝑙𝑙(𝑦𝑦𝑖𝑖𝑡𝑡) = 𝛼𝛼 + 𝛽𝛽1𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑐𝑐𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢_𝑢𝑢𝑒𝑒𝑢𝑢𝑖𝑖𝑡𝑡 + 𝛽𝛽2𝑐𝑐𝑙𝑙𝑙𝑙_𝑓𝑓𝑢𝑢𝑢𝑢𝑐𝑐𝑖𝑖𝑡𝑡 +

𝛽𝛽3𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑐𝑐𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢_𝑢𝑢𝑒𝑒𝑢𝑢𝑖𝑖𝑡𝑡 × 𝑐𝑐𝑙𝑙𝑙𝑙_𝑓𝑓𝑢𝑢𝑢𝑢𝑐𝑐𝑖𝑖𝑡𝑡 + 𝛽𝛽4𝑋𝑋𝑖𝑖𝑡𝑡 + 𝛾𝛾𝑖𝑖 + ∆𝑡𝑡 + 𝜀𝜀𝑖𝑖𝑡𝑡,             (2) 

where 𝑦𝑦𝑖𝑖𝑡𝑡 is firm i’s output at time t, 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑐𝑐𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢_𝑢𝑢𝑒𝑒𝑢𝑢𝑖𝑖𝑡𝑡 is the cumulative number of upgrade 

experiments conducted by the firm up to time t, 𝑐𝑐𝑙𝑙𝑙𝑙_𝑓𝑓𝑢𝑢𝑢𝑢𝑐𝑐𝑖𝑖𝑡𝑡 is the fraction of low-end products in 

the firm’s total number of products, and 𝑋𝑋𝑖𝑖𝑡𝑡 is a set of control variables, including indicators for 

firm i employing a university-educated engineer or having a merchant on its board of executives, 

the growth rates of both high-end and low-end machine capacity (spindles) between t and t+1, 

and logged output at time t. The estimation is conducted using panel data estimation with firm 
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fixed effects 𝛾𝛾𝑖𝑖 so as to capture the impact of firm-specific knowledge accumulation through 

upgrade experiments and the transfer of that knowledge into expansion of its low-end product 

portfolio. The parameters of interest are 𝛽𝛽1 and especially that on the interaction term, 𝛽𝛽3. A 

positive 𝛽𝛽3 would be consistent with a complementarity between vertical product upgrading 

experimentation and product diversification. 

 Table 6 reports the results. In column (1) we simply examine whether the cumulative 

number of upgrade experiments raises firms’ growth rates. The coefficient on the cumulative 

number of upgrade experiments is positive but not statistically significant at conventional levels. 

Employing a degreed engineer is associated with a 9.6 percent increase in the firm growth rate, 

other things equal. This corresponds to about half of the gap in growth rates between the 25th and 

the 75th quartiles in the sample. In contrast, having a merchant on the firm’s board of executives 

is unrelated to firm growth. 

In the specification in column (2) we add the interaction of the cumulative number of 

upgrade experiments and the fraction of low-end products. While the coefficient on cumulative 

upgrade experiments becomes economically and statistically indistinguishable from zero, the 

coefficient on the interaction is positive and significant, at 0.04. Given that the mean number of 

cumulative upgrade experiments in the sample is 1.14 and the mean fraction of low-end products 

is 0.84, this implies that an additional upgrade experiment at the mean low-end product fraction 

is associated with a 3.4 percentage point higher output growth rate. Similarly, increasing the 

fraction of low-end products by one standard deviation (0.27) from the mean is associated with a 

1.2 percentage point higher growth rate at the mean number of cumulative upgrade experiments. 

The link between upgrade experiments and growth does indeed appear to act through a 

mechanism tying experimentation with vertically differentiated products to the extent of the 

horizontal differentiation of the firm’s product offerings. 

--- Table 6 around here --- 

Recall that some new high-end products (specifically, relatively easy-to-produce mid-

20s-count yarns) could be introduced, at least on a trial basis, before firms had fully installed 

high-end machines. In particular, as shown in appendix A.6 (Table A.10), some firms apparently 

used such upgrade experiments to determine whether to make costly investments in high-end 

machines and university-educated engineers in the first place. This suggests that while they were 

useful for firms to decide on their investment strategies, their usefulness for learning the 
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technology and hence post-investment growth could be more limited. To test this conjecture, in 

columns (3) and (4) we split the cumulative number of upgrade experiments conducted by a firm 

into those conducted with and without high-end machines. 

The estimation results show that the cumulative number of upgrade experiments 

conducted with high-end machines had a larger and more precisely estimated association with 

firm growth than the cumulative number of all upgrade experiments. The estimates in column (3) 

imply that each upgrade experiment conducted with high-end machines installed was related to a 

3.2 percentage point increase in the firm’s growth rate. Firms that already had high-end machines 

saw average output growth of 6.2 percent, so each upgrade experiment added just over half of the 

mean growth rate in this sample. The interacted specification in column (4) also implies a much 

larger relationship with firm growth than its counterpart using all upgrade experiments. The 

mean cumulative number of upgrade experiments among firms with high-end machines is 2.21, 

and the average fraction of low-end products in this sample is 0.67. Therefore the coefficient on 

the interaction term of 0.087 implies that one additional upgrade experiment, conditional on the 

mean fraction of low-end products, was associated with a 5.8 percentage point higher output 

growth. This is slightly over 30 percent of the interquartile difference in growth rates across 

firms. Similarly, a one-standard-deviation increase in the fraction of low-end products was 

associated with a 6.3 percent higher total output growth rate at the mean number of cumulative 

upgrade experiments. 

The decision to conduct product upgrading experiments may be related to other factors 

correlated with firm growth. To have a better sense of the causal connection between upgrade 

experimentation and firm growth, we again use mandatory output cuts as a source of exogenous 

variation in upgrade experimentation. Here, we employ the continuous measure of the extent of 

relative output cuts imposed on low-end products at time t, described in Section 2.4 above and 

presented in Table A6 in the appendix. We interact this with the (also continuous) growth rate of 

new high-end machine capacity during period t to construct an instrument for upgrade 

experiments that varies both intertemporally and in the cross section. 

Because the endogenous variable is cumulative high-end experiments but the logic of our 

exogenous variables works contemporaneously, we estimate our IV specification in two stages. 

First, similar to the specification in Table 3 above, we use a Poisson regression to obtain a 

predicted number of upgrade experiments conducted by a firm in a particular period. The model 
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uses the aforementioned output restrictions and high-end machine installation as well as other 

exogenous variables (firm age, logged firm output, etc.). Next, we construct the firm’s implied 

cumulative predicted upgrade experiments by summing these period-specific predicted values. 

We use this constructed predicted upgrade experiments as an explanatory variable in our causal 

inference regressions. 

We present the first stage regression results in column (1) of Table 7. The dependent 

variable is the number of upgrade experiments the firm starts in period t, while the explanatory 

variables include the fraction of mandated output cuts in period t, the growth rate in the number 

of high-end machine capacity in period t, and their interaction. The coefficient on the interaction 

term is positive and significant, consistent with firms that expanded high-end machines being 

pushed toward conducting upgrade experiments especially during times of output cuts. As a 

placebo test, we conducted a similar regression using the growth rate in low-end capacity 

instead. See column (2) in Table 4. There is no significant relationship between upgrade 

experiments and the interaction in this case. 

--- Table 7 around here --- 

We then use the constructed number of upgrade experiments to estimate an equation 

similar to (2). The results are in columns (3) and (4) of Table 7. The coefficient on the predicted 

cumulative number of upgrade experiments in column (3) is positive but small and statistically 

insignificant, similar to what we found in column (1) in Table 6. Column (4) uses the interaction 

of constructed cumulative upgrade experiments and the fraction of low-end products. The 

coefficient on this interaction is twice as large as the corresponding coefficient in Table 6 and is 

estimated much more precisely. In fact, despite very different estimation methodologies, the 

coefficient on instrumented variables (and the implied magnitudes of growth effects) from the 

second-stage regressions in column (4) of Table 7 is very similar to the coefficient in column (4) 

of Table 6, where we looked specifically at upgrade experiments conducted by firms that already 

had high-end machines. 

 
6. Transmission channels 

How exactly does technical knowledge acquired through experimentation with upgrade 

products lead to the expansion of low-end product varieties? We consider two possible channels: 
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increased flexibility of the firm’s production system, including in low-end products, and 

increased demand-side appeal of low-end products. 

 

6.1 Production system flexibility as a transmission channel 

Recall that besides being differentiated by counts, product varieties in our data are also 

distinguished by the direction of twist (S-twist and Z-twist single yarn) and whether yarn is 

further doubled and/or gassed. These different types, even within the same count category, serve 

different needs of fabric weavers. During our sample, S-twist yarn was often associated with 

weft while Z-twist was often associated with warp.19 S-twist and Z-twist yarn also differ in 

strength and softness (Z-twist is stronger, but S-twist is softer to the touch). Doubled and gassed 

yarn serve still other weaving purposes. As demand conditions change, firms that can flexibly 

switch across different twist directions within a given count or across adjacent counts are better 

able to respond to such changing conditions, and thus have better growth opportunities. We 

examine if the knowledge capital accumulated through upgrading experiments contributed to 

firms developing more flexible production systems. 

To construct an empirical measure of production system flexibility, we use monthly data 

to construct two measures of the frequency of a firm’s product portfolio rebalancing. The first 

counts how often the firm changes the “lead direction” of its yarn of the same count. For 

example, suppose that both firm A and firm B produce 16-count yarn. Suppose further that firm 

A produces 80 percent of its 16-count output in S-twist and 20 percent in Z-twist in both t and t-

1. Firm B, on the other hand, produces 80 percent of its 16-count output in S-twist and 20 

percent in Z-twist in t-1, but then changes to 80 percent in Z-twist and 20 percent in S-twist in t. 

We say that firm B rebalanced its portfolio of 16-count yarn between t-1 and t, while firm A did 

not. More generally, for each count category, we define the “lead direction” to be the way in 

which the majority of yarn in the count category was processed (S-twist, Z-twist, doubled or 

gassed). We use monthly data to count the number of times the firm changed this lead direction 

within any given semi-annual period. Adjusting the lead direction is time-consuming (see 

appendix A.7), so we infer that firms that did such adjustments more frequently had a more 

flexible production system. 

                                         
19 In the process of weaving textiles from yarn, the longitudinal warp yarns remain stationary on a frame or loom, 
while the transverse weft is drawn through and inserted over and under the warp. 



 26 

A second measure of portfolio rebalancing counts the number of times a firm changed its 

“lead” count category within each direction (S-twist, Z-twist, doubled and gassed yarn). Suppose 

firms A and B produce two count categories of S-twist yarn, 16 and 20 counts. Firm A produces 

80 percent of its output of S-twist yarn as 16-count and 20 percent as 20-count in both t and t-1. 

Firm B, on the other hand, produces 80 percent of its output of S-twist yarn as 16-count and 20 

percent as 20-count in t-1, but then switches in t to 80 percent as 20-count and 20 percent as 16-

count. Once again, we say that firm B rebalanced its portfolio of S-twist yarn between t-1 and t, 

and firm A did not. This operation is also time-consuming, so our second measure of a firm’s 

production system flexibility is the number of times it changed the “lead count” category in a 

given semi-annual period. 

To address the role played by knowledge capital accumulated through product upgrade 

experiments as cleanly as possible, we limit our product flexibility measure to low-end products 

(up to 20 count). We examine how the two measures of product portfolio rebalancing at the low-

end of the product variety spectrum were associated with the cumulative number of product 

upgrade experiments, which by construction involve only high-end products, and product 

diversification experiments, which can involve low-end products. (All the findings presented 

below are robust to using product portfolio rebalancing measures over all product varieties, 

including high-end ones.) 

Table 8A reports estimation results from within-firm panel regressions. The estimation 

equation is 

𝑦𝑦𝑖𝑖𝑡𝑡 = 𝛼𝛼 + 𝛽𝛽1𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑐𝑐𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢_𝑢𝑢𝑒𝑒𝑢𝑢𝑖𝑖𝑡𝑡−1 + 𝛽𝛽2𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑢𝑢𝑑𝑑𝑑𝑑𝑢𝑢𝑢𝑢𝑠𝑠_𝑢𝑢𝑒𝑒𝑢𝑢𝑖𝑖𝑡𝑡−1 + 𝛽𝛽3𝑋𝑋𝑖𝑖𝑡𝑡 + 𝛾𝛾𝑖𝑖 + ∆𝑡𝑡, 

where 𝑦𝑦𝑖𝑖𝑡𝑡 are the two measures of firm-specific production system flexibility described above. 

The explanatory variables of interest are again the cumulative numbers of upgrade and 

diversification experiments conducted by firm i by time t-1. We include as control variables 𝑋𝑋𝑖𝑖𝑡𝑡 

indicators for high-end and low-end machine expansions in t-1 as well as for the presence of a 

university-educated engineer and a merchant on the board of firm i at time t. The regressions also 

include semi-annual time dummies and firm fixed effects. The firm fixed effects mean we are 

measuring the within-firm relationship between conducting more upgrade/diversification 

experiments and its production system flexibility in the low-end product space. 

The results strongly support the conjecture that knowledge accumulated through product 

upgrade experiments contributed to greater production system flexibility in low-end product 
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varieties. After firms did more vertical upgrading experiments, they rebalanced their portfolios of 

low-end product varieties more frequently, both across twist directions within a given count 

category and across count categories within a twist direction. The relationship was stronger for 

within-count lead direction changes than for within-direction lead count changes (e.g., switching 

from 20-count S-twist to 20-count Z-twist rather than switching from 16-count S-twist to 20-

count S-twist). The coefficient on the cumulative number of upgrade experiments in the within-

count portfolio rebalancing regression (the first column in Table 8A) is 0.22, while the mean 

number of within-count portfolio rebalancing events is 0.47. Hence an additional upgrade 

experiment was associated with an increase in portfolio rebalancing within counts by about 50 

percent of its mean. The coefficient on the cumulative number of upgrade experiments in the 

across-count portfolio rebalancing estimations (the second column in Table 8A) is 0.15, implying 

that an additional upgrade experiment is associated with an increase in portfolio rebalancing 

across counts by about 15 percent of its mean (equal to 1.0). 

Remarkably, experience conducting diversification experiments had no such effects, even 

though diversification experiments involve low-end products. Once again, vertical product 

expansions appear to have spillovers into production capabilities that horizontal expansions do 

not. These spillovers do not appear to be due the direct operation of the (indeed more flexible) 

high-end machines themselves. There is no obvious advantage of high-end machines for within-

count direction rebalancing, and we control for high-end machine expansion in the regressions. 

Accumulated technical knowledge from product upgrade experiments, not the presence of high-

end machines per se, appears responsible for more flexible within-count portfolio rebalancing.20 

--- Table 8A around here --- 

                                         
20 This link can be put in a broad historical context. At the start of our sample, the lion’s share of all yarn produced 
by Japanese firms was S-twist. This changed dramatically over time. Figure A4 in appendix A.7 plots the dynamics 
of the fraction of non-S twist varieties in the total number of product varieties. The fraction of non-S-twist varieties 
was less than 30 percent of the total in both high-end and low-end product varieties early on, but producers of high-
end product varieties quickly switched to almost exclusively Z-twist, doubled, and gassed yarn. The fraction of non-
S-twist among low-end product varieties, on the other hand, remained at about 40 percent at the turn of the 20th 
century and gradually increased to about 60 percent toward the end of the sample, with firms producing high-end 
products leading the way. The mean fraction of non-S-twist varieties in the total number of low-end product 
varieties over the sample was 0.48 for firms that produced at least one high-end product, but only 0.28 for firms that 
did not produce high-end products. This difference is statistically significant. Experience with high-end products 
enabled the broadening of the product varieties range, creating more flexible production systems also at the low end 
(cf. Roberts, 2004, pp. 37-38). 
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Table 8B confirms that these transmission channels of upgrade experiments contributed 

to firm growth. A rise in portfolio rebalancing from t to t+1, regardless of whether it was within-

or across-count, was economically and statistically significantly associated with accelerations in 

firm growth. One extra within- (across-) count portfolio rebalancing is associated with 1.1 (1.3) 

percentage point higher growth rates. Because the distribution of rebalancing events across firms 

and time is highly skewed, a better sense of the magnitudes might be obtained by calculating the 

effect of a firm moving from doing no portfolio rebalancing to the mean rebalancing level, 

conditional on rebalancing being positive. This conditional mean of within- (across-) count 

portfolio rebalancing events is 2.22 (2.12). Hence, a moving from no within-count (across-count) 

portfolio rebalancing to its conditional mean is associated with a 2.4 (2.8) percentage point faster 

growth rate of total output. If we include both upgrade experiments and portfolio rebalancing in 

the same growth regressions (not shown), the coefficients on cumulative past upgrade 

experiments in Table 6 and those on the number of portfolio rebalancing events in Table 8B 

remain almost the same. The two relationships therefore operate independently of each other.21 

--- Table 8B around here --- 

 

6.2 Quality of low-end products as a transmission channel 

In this section we examine how a firm’s experience of upgrading experimentation affects 

the demand appeal of its low-end products. We utilize the method of estimating quality for 

horizontally differentiated products proposed by Khandelwal (2010), which essentially boils 

down to looking at relative market shares after adjusting for price differences. While we do not 

have firm-level price data for most product varieties, we do for a key 20-count yarn for about 40 

percent of observations.22 The 20-count yarn is also just at the borderline between low-end and 

                                         
21 Because upgrade experiments and the associated more flexible production system allow firms to better respond to 
changing demand, these should also be associated with higher capacity utilization rates. We know firms’ installed 
spindle capacities as well as the number of spindles they had in operation each period, so we computed capacity 
utilization and confirmed that it positively covaries with our product system flexibility measures. Each additional 
lead change (of either type) is associated with about one percentage point increase in capacity utilization rates. 
Details are available upon request. 
22 The 20 count accounted for 27.6 percent of industry output over the sample, but its importance goes far beyond 
this. When the industry was still in its infancy, Japanese firms could not produce counts higher than 16 because they 
were limited to poor quality domestic and Chinese cotton. Indian cotton imports arrived toward the end of the 1880s, 
and in 1890, Osaka Spinning Company exported the first experimental batch of 20-count yarn to China. This marked 
the start of the transition to a competitive industry (Kinugawa, 1961, Vol. 4, Ch. 1). Even as new high-end products 
were developed, 20-count yarn remained the most important low-end product. Being one of the only two yarn counts 
listed on the Osaka Three Articles Exchange (alongside 16 count), it totally dominated the trade volume (over 95 
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high-end products, which allows us to instrument for its price using a plausible cost shifter that 

would be difficult to obtain in our data for other product types. 

Specifically, we use our portfolio rebalancing measure introduced in the previous section, 

here focusing on counts around 20, and interact it with the degree of industry-wide mandatory 

output cuts imposed on low-end products. As noted, rebalancing the portfolio entailed 

adjustment costs, so its frequency can be used as a proxy for such costs. Lower adjustment costs 

allowed firms to substitute more easily from 20-count output to counts above 20; hence, such 

firms would feel less pressure to reduce the 20-count price during periods of slow demand than 

would firms facing higher adjustment costs.23 This gives us a supply-side source of price 

variation that is plausibly uncorrelated with quality (demand appeal). 

Before we proceed further, we note that while most firms (and all important firms) had 

their own registered brands, including for 20-count yarn (e.g., Kanegafuchi Spinning’s “Rangyo 

(Indigo Fish)” brand, Settsu Spinning’s “Kujyaku (Peacock)” brand, etc.), indicating some 

degree of horizontal differentiation, the within-count substitution across brands appears to be 

very high, as indicated by a very small degree of variation in prices.24 This makes it hard to 

obtain precise estimation of the effect of price on demand but we tried anyway. 

Thus, to instrument for the price of 20-count yarn, we construct an across-count portfolio 

rebalancing measure for counts from 17 to 48 (that is, excluding very low and very high counts) 

and interact it with the time-varying degree of mandatory output cuts. The results of this first-

stage estimation (which also includes semiannual time fixed effects and firm fixed effects which 

are included in the second stage) are presented in the first column of Table 9A. Lower portfolio 

adjustment costs (more frequent portfolio rebalancing by a firm) are strongly positively 

associated with the firm’s 20-count price during mandatory output cuts periods, even controlling 

for both firm and time fixed effects. Again, because portfolio rebalancing distribution is highly 

skewed, it is illuminating to compute the effect of going from doing no portfolio rebalancing to 

its mean conditional on being positive and mandated output cuts being in place. This conditional 

                                         
million yen gross trade volume in 1914 as opposed to just over 1,320 yen for the 16 count), and was traded every 
month, as opposed to only January and December for the 16 count (Tokei Nempo, 1915, pp. 166-169). 
23 The average price of 20-count yarn was significantly lower (between 2-9 percent) during mandatory output cut 
periods than in adjacent periods without cuts. 
24 As can be seen from Table A11 in appendix A.8, the coefficient of variation of 20-count price across the sample 
was just 2.8 percent, while the interquartile dispersion coefficient was a meager 1.6 percent. Even the 90-10 
percentile dispersion coefficient was only a bit over 3 percent. All of these were an order of magnitude smaller than, 
for instance, the corresponding statistics of wages of female production workers in the industry. 
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mean is 0.34, so going from doing no portfolio rebalancing to its conditional mean is associated 

with about one percent higher price, more than half of the interquartile dispersion during periods 

of output cuts (which at 1.8 percent is slightly higher than 1.6 percent in the whole sample). 

Recall that in the previous section we also constructed a second measure of portfolio 

rebalancing, across different directions (S-twist, Z-twist) within the same count. While this 

measure was associated with lower adjustment costs and firm growth (see Tables 8A and 8B 

above), there is no reason why lower adjustment costs within the same count should be relevant 

for keeping up the price of the 20 count during mandatory output cuts. Based on this logic, we 

conducted a “placebo test” by looking at the relationship between the 20-count price and the 

interaction of within-count portfolio rebalancing and mandatory output cuts. The estimation 

results are in the second column of Table 9A. The logic holds; the relationship is statistically and 

economically indistinguishable from zero. 

In the second stage, we regress the firm’s (logged) share of industry-wide output of 20-

count yarn on the instrumented logged price as well as the measure of across-count portfolio 

rebalancing and time and firm dummies. The results, in Table 9B, indicate that the own-price 

elasticity is negative and large in magnitude, about -7.5. This is line with high substitutability 

across horizontally differentiated brands. That said, it is worth noting that the standard errors on 

these elasticity estimates are high, most likely because of low price variation in the sample 

discussed above (which is itself consistent with a high willingness of buyers to switch yarn 

suppliers). For the sake of comparison, in appendix A.8, Table A12 we present the results of an 

OLS estimation of firms’ market shares of 20 count on own price, and the same other controls. 

This “naïve” regression produces an own-price elasticity of -3, so the IV estimation, while 

imprecise, moves the estimated elasticity in the theoretically predicted direction. 

We use the demand estimates to construct the Khandelwal (2010)-style quality (demand 

appeal) measure for each firm’s 20-count product in each period. This involves adding the 

estimated coefficients for the corresponding firm and time fixed effect to the demand residual.25 

We then use this demand appeal measure as a dependent variable to examine whether 

past experimentation is related to it. As before, we capture the temporal complementarity 

between product upgrading and horizontal diversification by interacting the cumulative number 

                                         
25 In our setting, Khandelwal’s “outside good” is an amalgam of cotton yarns of all other counts. 
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of upgrade experiments and the fraction of low-end products in the total number of product 

varieties produced by a firm. The estimation equation is:  

𝑦𝑦𝑖𝑖𝑡𝑡 = 𝛼𝛼 + 𝛽𝛽1𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑐𝑐𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢_𝑢𝑢𝑒𝑒𝑢𝑢𝑖𝑖𝑡𝑡 + 𝛽𝛽2𝑐𝑐𝑙𝑙𝑙𝑙_𝑓𝑓𝑢𝑢𝑢𝑢𝑐𝑐𝑖𝑖𝑡𝑡 + 

                        𝛽𝛽3𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑐𝑐𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢_𝑢𝑢𝑒𝑒𝑢𝑢𝑖𝑖𝑡𝑡 × 𝑐𝑐𝑙𝑙𝑙𝑙_𝑓𝑓𝑢𝑢𝑢𝑢𝑐𝑐𝑖𝑖𝑡𝑡 + 𝛽𝛽4𝑋𝑋𝑖𝑖𝑡𝑡 + ∆𝑡𝑡 + 𝜀𝜀𝑖𝑖𝑡𝑡,               (3) 

where 𝑦𝑦𝑖𝑖𝑡𝑡 is the quality (demand appeal) measure of firm i’s 20 count at time t constructed as 

above; 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑐𝑐𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢_𝑢𝑢𝑒𝑒𝑢𝑢𝑖𝑖𝑡𝑡 is the cumulative number of upgrade experiments conducted by 

the firm up to time t; 𝑐𝑐𝑙𝑙𝑙𝑙_𝑓𝑓𝑢𝑢𝑢𝑢𝑐𝑐𝑖𝑖𝑡𝑡 is the fraction of low-end products in the total number of 

products the firm makes; and 𝑋𝑋𝑖𝑖𝑡𝑡 is a set of control variables including indicators for the firm 

employing a university-educated engineer or having a merchant as a board member, the growth 

rates of high-end and low-end machine capacity between t and t+1, and firm age. As in the 

growth regression (2), the parameters of interest are 𝛽𝛽1 and 𝛽𝛽3. If experimentation with vertical 

product upgrading (the complementarity between experimentation with vertical product 

upgrading and product diversification) positively affects the demand appeal of 20 count, we 

expect 𝛽𝛽1 (𝛽𝛽3) to be positive. 

--- Tables 9A-9C around here --- 

Table 9C presents the estimation results. A firm’s upgrade experiments and their 

interaction with subsequent low-end product diversification are positively associated with the 

firm-specific demand appeal in 20-count yarn, especially when using the instrument for upgrade 

experimentation.26 Interestingly, the coefficient on the indicator for a firm employing a 

university-educated engineer is also positive and statistically significant in all specifications. 

Thus, engineering talent has an independent effect on demand appeal of 20-count product. On 

the other hand, the number of across-count portfolio rebalancing conducted by a firm around 20 

count in a given semi-annual period is negatively related to the demand measure. This suggests 

that during normal times, changing the portfolio balance across counts is associated with lower 

demand appeal of the firm’s 20-count yarn, all other things equal. 

Historical materials provided us with an opportunity to check the external validity of our 

estimation by comparing our quality measure to quality rankings of 20-count yarns published by 

the Osaka Three Articles Exchange in 1907. As can be seen from Figure A5 in appendix A.8, the 

                                         
26 Similar to Table 7 above, we instrument the endogenous number of upgrade experiments conducted by firm i at time 
t by using the exogenous variation provided by the expansion of high-end machine capacity during period t, interacted 
with the degree of relative output cuts imposed on low-end products. 
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two quality indices are by and large consistent with each other, with a correlation between the 

two metrics of 0.63. 

 

6.3 Robustness 

6.3.1 Survival rates 

Our results indicate that firms that installed high-end machines and conducted product 

upgrade experiments grew faster. While at first glance this might seem to imply that this reflects 

a superior outcome for firms, it is possible that upgrade experimentation actually increased the 

variance of outcomes rather than raising their mean. If so, we would observe faster growth 

conditional on survival, but this would be balanced against experimenting firms having a lower 

chance of surviving. While such a variance increase might still be preferable for firms (limited 

liability companies are essentially an option, after all), this mechanism is qualitatively different 

than one where upgrade experimentation simply raises expected growth. To explore this 

possibility, we investigate survival patterns in our data. 

In Panel A of Table 10, we present summary statistics on the status of firms at the end of 

our sample in 1914. Among the 105 firms for which we have machine data, 42 firms (40 percent) 

had high-end machines at some point. There were 33 firms that survived to the end of the 

sample, and 19 of these (58 percent) had high-end machines. Thus firms with high-end machines 

had a substantially higher probability of survival, not a lower one. This is not consistent with 

product upgrade experimentation being primarily a device that increases the variance of firms’ 

growth rates. 

Moreover, among the 72 exiting firms, we can distinguish those that exited by acquisition 

(53 firms) and by liquidating (19 firms). Firms that exit by acquisition are more likely to have 

high-end machines than firms that shut down, as seen in the table. High-end machines not only 

increased the chances of exiting by acquisition, but they also improved shareholders’ returns 

conditional on being acquired. We have data on acquisition prices for 46 acquisition cases. In 18 

of these cases, the acquired firm had high-end machines. We computed the “salvage fraction” of 

shareholders paid-in capital by dividing the acquisition price by the shareholders paid-in capital. 

The mean salvage fraction was 1.04 for acquired firms with high-end machines but only 0.70 for 

acquired firms that did not (a difference that is statistically significant at the 5 percent level).  
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Panel B of Table 10 reports results from hazard regressions using the complementary log-

log model. Consistent with Panel A, the estimation result in column (1) in Panel B of Table 10 

confirms that firms with high-end machines were more likely to survive than other firms, 

statistically significant at the 10 percent level. 

--- Table 10 around here --- 

To see more precisely what role the complementarities between upgrading and 

diversification may have played in survival, we limit observations to the time after high-end 

machines were first installed at each of the 42 firms that had high-end machines. We then 

calculate the average fraction of high-end products in the total number of all products produced 

by the firm over all observations. The idea is that firms that installed high-end machines but were 

unable to develop high-end products would suffer in terms of their survival probability, but so 

also would the firms that failed to convert the technology developed to produce high-end product 

varieties into longer-term expansion of the number of low-end product varieties. Hence, both too 

low and too high fractions of high-end products should be associated with higher risk of exit. 

Surviving firms should come predominantly from the middle part of this distribution, where they 

have a balance between the number of high-end and low-end products. 

The estimation results in column (2) of Table 10, Panel B show this is exactly what 

happened. An indicator for a firm having an average fraction of high-end products between 30 

and 70 percent is associated with more than 50 percent higher survival chances. This is 

statistically significant despite the small number of observations. In terms of raw data (not 

shown), 11 firms fall into this middle range of the fraction of high-end product varieties and nine 

of them survive; 31 firms fall into one of the two extremes (average fraction of high-end 

products less than 30 percent or higher than 70 percent) and only 10 of those survive.  

To sum up, having high-end machines appears to (a) improve the firm’s chances of 

survival, especially if it could develop high-end products successfully and then exploit 

complementarity between product upgrading and diversification to also expand low-end products 

and achieve a balanced product portfolio; (b) improve the chances of exiting by acquisition as 

opposed to shutting down, conditional on exit; and (c) improve the returns to shareholders 

conditional on exiting by acquisition. Thus the higher growth rates of firms that introduced high-

end machines did not entail higher risks. Entrepreneurial action and the removal of supply 

constraint benefited both growth and survival chances. 
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6.3.2 Mergers and acquisitions 

Firms can expand the range of their product varieties and scale up production through 

mergers and acquisitions. It could be that mergers and acquisitions generate in part the patterns 

of the complementarity between product upgrading and diversification that we documented 

above. 

We examined this possibility by using industry M&A information (Braguinsky et al., 

2015) and found that less than four percent of new product introductions coincide with an 

acquisition event. Conditional on new product introduction during a given semiannual period, the 

average number of newly introduced products is 1.8 in absence of a merger or acquisition and 

2.3 when one occurs. Thus while there is some uptick in new product introductions at the time of 

acquisitions, acquisitions played a rather modest role in product variety expansion. Also, if we 

include an acquisition event dummy in growth regressions like those in Table 6 above, the 

coefficient is not statistically significant at conventional significance levels. In growth 

regressions similar to Table 7, acquisitions are positively related to firm growth (as to be 

expected), but the effect of temporal complementarity between product upgrading and 

diversification on firm growth remains qualitatively unchanged even after controlling for merger 

and acquisition events. 

 

6.3.3 Market competition 

Increased competition in high-end product markets over time might induce firms to 

renew their attention to low-end product markets. This presents a potential alternative 

explanation for temporal complementarity between product upgrading and subsequent 

diversification. We examine several market competition measures from our data to look for 

suggestive evidence regarding this hypothesis. 

Figure A6 in appendix A.9 depicts the evolution of the shares of firms operating in the 

low- and high-end product markets, the ratio of industry-level high-end output to low-end output, 

and the average real price of 20 count yarns as a proxy for the average price of low-end products. 

While the fraction of firms producing in low-end product markets is stable throughout our 

sample period after some initial volatility, the fraction of firms in high-end product markets 

increases sharply between 1899 and 1904 and fluctuates thereafter. Our decomposition analysis 
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in Table 2, on the other hand, showed that most of the product variety expansion into low-end 

product markets took place after 1907, so the timing of product variety expansion into low-end 

product markets and the timing of rapid entry (and increased competition) in high-end product 

markets do not match. Also, after falling sharply in the 1890s, the average real price of 20 count 

yarns fluctuates around 60-70 yen after that, without any discernible upward or downward trend. 

Thus it is difficult to infer that low-end product markets became more attractive after 1907, when 

firms started expanding low-end product varieties and scaling their production. 

We also conducted firm-level regression analysis with new product introductions as a 

dependent variable and the number of firms in low-end product and high-end product markets 

and the average real price of 20 count yarns as explanatory variables, but none of these variables 

were related to new product introductions at conventional significance levels. Overall, we do not 

see much supportive evidence for the hypothesis that heightened competition in high-end product 

markets pushed firms toward low-end product markets. 

 

6.3.4 The role of exports 

We explored whether the motive to operate in export markets might have driven both 

upgrade experimentation and firm growth. 

As has been observed in many other settings in the literature, firms that export in our 

sample are larger on average than non-exporting firms. However, cotton spinning firms that 

export more (as a share of their output) produce fewer product varieties, particularly so for high-

end varieties. Hence it does not appear that exporting was a driving factor in our results above. 

This is explained by the nature of industry exports during our sample. Japanese cotton 

spinners successfully drove out imports and started exporting low-end products to East Asian 

markets during the 1890s. During those years, and to a large degree after that as well, exports 

were concentrated in a few low-end products (especially S-twist 16 count and Z-twist 20 count 

yarn). So major exporting firms tended to be focused on scaling their output in and around these 

product varieties. More often than not, they chose to forgo opportunities in high-end markets. 

 
7 Conclusions and Discussion 

Using detailed historical panel data from the Japanese cotton spinning industry, we 

showed that firm growth is associated with increased number of product varieties, but the 
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identity (type) of product varieties matters. High-growth firms followed a particular pattern of 

product variety expansion. They first went outside of their existing technological frontiers and 

experimentally introduced innovative products. Subsequently, they increased the number of 

product varieties they produced inside their frontier. In other words, they first engaged in vertical 

product differentiation and, later, horizontal differentiation. 

The consistency of this pattern reflected spillovers that product upgrade experiments had 

onto the horizontal diversification of firms’ product sets. The process of experimentation 

required firms to overcome technological constraints and cope with uncertainty by investing in 

new types of machines and hiring educated engineers. These newly developed inputs and their 

associated technical knowledge were broadly applicable—useful not just for upgrading but also 

for producing new varieties within the firms’ existing technological capabilities. This process 

was the major driver of industry firms’ growth. In contrast, conducting only horizontal product 

diversification (experiments) without upgrade experiments did not in general lead to sustained 

growth in either output or the number of product varieties produced. We identified at least two 

specific channels through which accumulated technical knowledge contributed to higher firm 

growth throughout the product space: increased flexibility of the production system and 

improved quality of low-end products. Both of these were strongly influenced by product 

upgrade experimentation. 

The relationship between product variety expansion and firm growth uncovered in our 

study is not considered in standard models. Models of endogenous growth through product 

variety expansion (e.g., Romer, 1990) predict that high-growth firms are those that keep 

introducing new product lines, all of which are of the same type. Quality ladder models (e.g., 

Grossman and Helpman, 1991; Klette and Kortum, 2004) predict that high-growth firms are 

those that keep generating innovative products which are upgrades over existing versions, but 

vertical differentiation happens only within, not across product lines. In these models, technically 

more difficult innovative products are positively associated with consumer preferences, i.e., 

quality. In both these versions of endogenous growth theory, any past product introduction 

contributes to the accumulation of knowledge capital and serves as a determinant of future 

product expansion and firm growth. In contrast, in our case, introducing technologically more 

challenging products is tied much more strongly to growth than simple horizontal product 

proliferation. This highlights the importance of incorporating into analytical frameworks the 
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heterogeneity with respect to the particular ways and directions in which product variety 

expansion occurs. 
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Figures and Tables  
 

Figure 1. Dynamics of output and number of product varieties per firm 
 

 
Source: Our calculations using the data described in the main text and in the appendix. 
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Table 1. Breakdown of product lines and products by experimental and nonexperimental 
 

Panel A. Product lines    
 All (1) Fraction in total Never scaled (2) Ratio: (2)/(1) 
All product lines ever produced 1,167 1.000 324 0.278 
Of which: never experimental 620 0.531   
                 initially experimental 547 0.469 324 0.592 
Of which: Upgrade lines 91 0.166 41 0.451 
New product lines  685 1.000 271 0.396 
Of which: never experimental 246 0.359   
                 initially experimental 439 0.641 271 0.617 
Of which: Upgrade lines 76 0.111 39 0.513 
     
Panel B. Experimental products   

 All “Successful” 
(scaled) 

“Failed” 
(not scaled) Fraction “failed” 

All experimental products 819 223 596 0.728 
Of which: upgrade experiments 116 42 74 0.638 
               diversification 

 
703 181 522 0.743 

Fraction upgrades 0.142 0.188 0.124  
Source: Our calculations using the data described in the main text and in the appendix. “New” product lines are 
those that were not in the firm’s set of product varieties produced at entry or at the time of the first observation. 
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Table 2. Decomposition Analysis  
 A. All product varieties 

 Total change Composition Within 

Period   Total Continuing firms Deviation from own 
average 

 
(a)=(b)+(c) (b) (c)= (d) 

+ (e)+(f) 
Total Expansion Allocation Entrants Exiting 

firms 
 (d)=(g)+(h) (g) (h) (e) (f) 
1893.2-1914.2 8.976 3.347 5.629 6.657 5.360 1.298 -0.234 -0.794 
1893.2-1906.2 2.526 1.625 0.901 1.039 0.017 1.022 -0.254 0.116 
1907.1-1914.2 6.450 1.722 4.728 5.619 5.342 0.276 0.019 -0.910 
         
 B. High-end product varieties 

 Total change Composition Within 

Period   Total Continuing firms Deviation from own 
average 

 
(a)=(b)+(c) (b) (c)= (d) 

+ (e)+(f) 
Total Expansion Allocation Entrants Exiting 

firms 
 (d)=(g)+(h) (g) (h) (e) (f) 
1893.2-1914.2 5.076 2.339 2.736 3.408 2.838 0.569 -0.124 -0.548 
1893.2-1906.2 1.804 1.494 0.310 0.477 0.089 0.388 -0.144 -0.022 
1907.1-1914.2 3.271 0.845 2.426 2.931 2.749 0.181 0.020 -0.525 
         
  C. Low-end product varieties 

 Total change Composition Within 

Period   Total Continuing firms Deviation from own 
average 

 
(a)=(b)+(c) (b) (c)= (d) 

+ (e)+(f) 
Total Expansion Allocation Entrants Exiting 

firms 
 (d)=(g)+(h) (g) (h) (e) (f) 
1893.2-1914.2 3.901 1.008 2.893 3.250 2.521 0.729 -0.111 -0.247 
1893.2-1906.2 0.722 0.131 0.591 0.562 -0.072 0.634 -0.109 0.138 
1907.1-1914.2 3.179 0.877 2.302 2.688 2.593 0.095 -0.001 -0.385 

Source: Our calculations using the data described in the main text and in the appendix. 
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Table 3. Product variety expansion as a function of past upgrade experiments 
 

Panel data estimation with firm fixed effects. Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. 
 
  

VARIABLES 

DV: # of all 
products at t, 
minus # of all 
products at t-

1 

DV: # of 
high-end 

products at t, 
minus # of 
high-end 

  
 

DV: # of low-
end products 
at t, minus # 
of low-end 
products at t-

 

DV: # of all 
products at t, 
minus # of all 
products at t-

1 

DV: # of 
high-end 

products at t, 
minus # of 
high-end 

  
 

DV: # of low-
end products 
at t, minus # 
of low-end 
products at t-

  (1) (2) (3) (4) (5) (6) 
Cumulative number of upgrade 
experiments at t-1 

0.433*** 0.258*** 0.202*** 0.384*** 0.239*** 0.174** 
(0.093) (0.059) (0.074) (0.090) (0.058) (0.073) 

Cumulative number of 
diversification experiments at t 

 

0.018 0.001 0.014 0.022 0.003 0.017 
(0.039) (0.009) (0.034) (0.036) (0.008) (0.032) 

Dummy equal to 1 if high-end 
machine expansion during 

  

      0.659*** 0.269** 0.389** 
      (0.214) (0.128) (0.149) 

Dummy equal to 1 if low-end 
machine expansion during 

  

      0.216 0.002 0.213* 
      (0.137) (0.046) (0.113) 

Dummy =1 if university-
educated engineer employed at 
 

      0.370* 0.272* 0.121 
      (0.190) (0.138) (0.142) 

Dummy =1 if merchant a 
member of board at t 

      0.193 0.041 0.148 
      (0.151) (0.064) (0.114) 

Number of all products at t -1 -0.405***     -0.408***   
(0.041)     (0.040)   

Number of high-end products at 
t-1 

  -0.455***    -0.462***  
  (0.045)    (0.042)  

Number of low-end products at 
t-1 

    -0.385***   -0.385*** 
    (0.049)   (0.049) 

Constant 2.740*** 0.686*** 2.007*** 2.375*** 0.558** 1.767*** 
(0.609) (0.226) (0.470) (0.626) (0.239) (0.486) 

Semiannual time and 
observation dummies 

Included Included Included Included Included Included 
Firm FE Included Included Included Included Included Included 
Observations 1,618 1,618 1,618 1,618 1,618 1,618 
Within R-squared 0.221 0.241 0.225 0.235 0.252 0.234 
Number of firms 99 99 99 99 99 99 
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Table 4. Firms with and without High-End Machines: Market Ties, Educated Engineers, and 
Experimental v. Non-Experimental Product Introductions 

 

 High-End 
Machines 

No High-End 
Machines 

Fraction of firms with a merchant as a board member 0.71 0.57 
Number of university-educated engineers employed 1.61 0.14 
Number of technical college-educated engineers employed 4.76 0.72 
New experimental product introductions: All 0.60 0.25 

Of which, fraction that are successful 0.21 0.35 
New experimental product introductions: Upgrade 0.10 0.03 

Of which, fraction that are successful 0.36 0.35 
New experimental product introductions: Diversification 0.50 0.22 

Of which, fraction that are successful 0.18 0.35 
New non-experimental product introductions: All 0.11 0.11 
New non-experimental product introductions: Upgrade 0.06 0.01 
New non-experimental product introductions: Diversification 0.05 0.09 

Notes: The differences in means of new experimental product introduction are highly statistically significant 
between firms with and without high-end machines using double-sided t-test. The differences in means of fractions 
of successful experiments are not statistically significant for upgrading whereas they are statistically highly 
significant for diversification. The differences in the fraction of firms with a merchant as a board member and in the 
means of the number of university- and technical college-educated engineers are highly statistically significant 
between firms with and without high-end machines. 
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Table 5. Factors affecting the number of experiments a firm started during period t 
 
Panel A. DV: Product upgrade experiments 

 (1) (2) (3) (4) (5) (6) 

VARIABLES All firms Firms with high-end 
machines 

Dummy equal to one if had high-end 
machines in period t 

1.066***      
(0.378)      

Dummy equal to 1 if high-end 
machine expansion during period t 

 1.493***  0.823** 1.098*** 0.464 
 (0.305)  (0.366) (0.314) (0.352) 

Interaction term between high-end 
machines expansion and mandated 
output cuts dummies during period t 

   1.012*  1.703*** 
   (0.580)  (0.609) 

Dummy equal to 1 if low-end 
machine expansion during period t 

 -0.266  -0.386 -0.474 -0.458 
 (0.359)  (0.405) (0.459) (0.456) 

Dummy =1 if university-educated 
engineer employed at t 

  0.715* 0.568  0.509 
  ((0.408) (0.426)  (0.497) 

Dummy =1 if merchant a member of 
board at t 

  1.521*** 1.455***  1.623*** 
  (0.432) (0.414)  (-0.567) 

Firm age 
0.007 0.018 -0.009 -0.011 0.007 -0.033 

(0.026) (0.022) (0.030) (0.031) (0.028) (0.033) 

Constant 
-2.396*** -2.268*** -3.501*** -3.448*** -1.695*** -3.132*** 

(0.485) (0.422) (0.580) (0.562) (0.518) (0.851) 
Semi-annual time dummies Included Included Included Included Included Included 
Observations 1,618 1,618 1,618 1,618 701 701 

 
Panel B. DV: Product diversification experiments 

 (1) (2) (3) (4) (5) (6) 

VARIABLES All firms Firms with high-end 
machines 

Dummy equal to one if had high-end 
machines in period t 

0.941***      
(0.209)      

Dummy equal to 1 if high-end 
machine expansion during period t 

 1.101***  0.835*** 0.774*** 0.624** 
 (0.215)  (0.315) (0.213) (0.303) 

Interaction term between high-end 
machines expansion and mandated 
output cuts dummies during period t 

   0.055  0.257 
   (0.437)  (0.431) 

Dummy equal to 1 if low-end 
machine expansion during period t 

 0.221  0.130 0.079 0.019 
 (0.227)  (0.231) (0.280) (0.277) 

Dummy =1 if university-educated 
engineer employed at t-1 

  0.846*** 0.747***  0.681*** 
  (0.182) (0.177)  (0.210) 

Dummy =1 if merchant a member of 
board at t-1 

  0.456** 0.388**  0.438 
  (0.180) (0.162)  (0.267) 

Firm age 
-0.024 -0.017 -0.040** -0.040** -0.024 -0.047** 
(0.017) (0.017) (0.018) (0.017) (0.020) (0.019) 

Constant 
-1.150*** -1.006*** -1.440*** -1.497*** -0.256 -1.014** 

(0.319) (0.319) (0.330) (0.305) (0.383) (0.490) 
Semi-annual time dummies Included Included Included Included Included Included 
Observations 1,618 1,618 1,618 1,618 701 701 

Poisson regression with the number of upgrade experiments started in period t as the dependent variable. Robust standard errors 
clustered at the firm level in parentheses. *** p<0.01, ** p<0.05, * p<0.1. Note: mandated output cuts measure does not vary 
within periods and is therefore absorbed by the semi-annual time dummies. 
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Table 6. Firm Growth and Complementarity between Product Innovation and Diversification: 
Panel Estimation 

  
DV: Ln(output) at t+1, minus Ln(output) at t 

 (1) (2) (3) (4) 

Cumulative number of upgrade experiments at t 0.021 -0.001   
(0.013) (0.011)   

Cumulative number of upgrade experiments x  0.040**   
fraction of low-end products at t  (0.019)   

Cumulative number of upgrade experiments 
with high-end machines at t 

  0.032*** -0.015 
  (0.012) (0.019) 

Cumulative number of upgrade experiments 
without high-end machines at t 

  -0.008 -0.027 
  (0.024) (0.034) 

Fraction of low-end products in total number of 
products at t 

-0.018 -0.104 -0.023 -0.147* 
(0.066) (0.080) (0.064) (0.083) 

Cumulative number of upgrade experiments 
 

   0.087*** 
high-end machines x fraction of low-end 

   
   (0.031) 

Cumulative number of upgrade experiments 
 

   0.022 
high-end machines x fraction of low-end 

   
   (0.026) 

Dummy = 1 if university-educated engineer at t 0.096** 0.101** 0.102** 0.104** 
(0.042) (0.042) (0.042) (0.043) 

Dummy = 1 if merchant board member at t 0.017 0.017 0.018 0.021 
(0.025) (0.026) (0.025) (0.026) 

Logged installed high-end spindles in t+1, minus 
Logged installed high-end spindles in t 

0.013* 0.013* 0.015** 0.016** 
(0.007) (0.007) (0.007) (0.007) 

Logged installed low-end spindles in t+1, minus 
Logged installed low-end spindles in t 

0.008 0.008 0.008 0.007 
(0.014) (0.014) (0.014) (0.014) 

Ln(output) at t -0.308*** -0.312*** -0.312*** -0.321*** 
(0.048) (0.048) (0.047) (0.047) 

Constant 2.497*** 2.605*** 2.528*** 2.700*** 
(0.356) (0.367) (0.350) (0.369) 

Semiannual time dummies Included Included Included Included 
Firm FE Included Included Included Included 
Observations 1,608 1,608 1,608 1,608 
R-squared 0.325 0.326 0.327 0.330 
Number of firms 99 99 99 99 

Fixed-effect panel estimations.  Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. 
Note: because high-end and low-end capacity can take values of zero, we have applied the inverse hyperbolic sine 
transformation, 𝑧𝑧 = 𝑐𝑐𝑙𝑙𝑢𝑢�𝑦𝑦 + �1 + 𝑦𝑦2�, where y is the actual number of spindles to obtain “Logged installed high-
end spindles” and “Logged installed low-end spindles” in the table above. We apply the same transformation in 
Table 7 and Table 8B below. 
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Table 7. Firm Growth and Complementarity between Product Innovation and Diversification: IV 
Estimation 

 
 DV: number of upgrade 

experiments started at t 
DV: Ln(output) at t+1, minus 

Ln(output) at t 
VARIABLES First stage “Placebo test” Second stage 
 (1) (2) (3) (4) 
     Cumulative number of upgrade 
experiments 

  0.012 
 

-0.014 
  (0.010) (0.013) 

Fraction of low-end products in total 
number of products 

-2.365*** -2.355*** -0.028 -0.079** 
(0.463) (0.461) (0.035) (0.039) 

Cumulative number of upgrade 
experiments x fraction of low-end products    0.080*** 

(0.023)  
Fraction of output cuts enforced at t x 
Logged installed high-end spindles in t+1, 
minus Logged installed high-end spindles 

  

2.542***    
(0.645)    

Fraction of output cuts enforced at t x 
Logged installed low-end spindles in t+1, 
minus Logged installed low-end spindles 

  

 -0.089   
 (0.568)   

Logged installed high-end spindles in t+1, 
minus Logged installed high-end spindles 
in t 

-0.132 0.039 0.019*** 0.019** 
(0.095) (0.091) (0.007) (0.007) 

Logged installed low-end spindles in t+1, 
minus Logged installed low-end spindles 

  

0.134* 0.116 0.018 0.016 
(0.069) (0.081) (0.017) (0.017) 

Dummy = 1 if university-educated 
engineer at t 

-0.681 -0.627 0.064*** 0.071*** 
(0.524) (0.513) (0.021) (0.022) 

Dummy = 1 if merchant board member at t 0.970** 1.020*** 0.025 0.022 
(0.383) (0.384) (0.017) (0.017) 

Logged total firm output at t 0.577*** 0.519*** -0.030*** -0.046*** 
(0.180) (0.185) (0.008) (0.009) 

Firm age 0.051 0.053 -0.006*** -0.009*** 
(0.032) (0.033) (0.002) (0.002) 

Constant -4.899*** -4.555*** 0.507*** 0.682*** 
(1.530) (1.543) (0.081) (0.096) 

Semiannual time dummies Included Included Included Included 
Observations 1,608 1,608 1,608 1,608 
Log pseudolikelihood (Adj. R-squared) -273.1 -277.3 0.170 0.177 
Estimation Poisson Poisson IV IV 
First stage: Poisson regression with robust standard errors clustered at the firm level. Second stage: OLS with robust 
standard errors. *** p<0.01, ** p<0.05, * p<0.1. Cumulative number of upgrade experiments is an instrumented 
variable in the IV estimations. Note: mandated output cuts measure does not vary within periods and is therefore 
absorbed by the semi-annual time dummies.  
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Table 8A. Product Upgrade Experiments and Production System Flexibility 
 

DV: Portfolio rebalancing 
VARIABLES Within-count Across-count 

Cumulative number of upgrade experiments at t-1 0.221*** 0.145* 
(0.075) (0.083) 

Cumulative number of diversification experiments at t-1 0.017 0.003 
(0.014) (0.026) 

Dummy = 1 if university-educated engineer at t 0.275* -0.076 
(0.141) (0.240) 

Dummy = 1 if merchant board member at t 0.049 0.119 
(0.093) (0.155) 

Dummy equal to 1 if high-end machine expansion during 
period t 

0.122 0.187 
(0.129) (0.120) 

Dummy equal to 1 if low-end machine expansion during 
period t 

0.139 -0.014 
(0.105) (0.082) 

Total output (thousands of tons, adjusted to 20-count) 
during period t 

-0.025 -0.096*** 
(0.028) (0.034) 

Constant 0.313 0.874*** 
(0.229) (0.264) 

Observations 1,605 1,605 
Semiannual time dummies and firm dummies Included Included 
Number of firms 99 99 
R-squared 0.088 0.063 

 
Table 8B. Portfolio Rebalancing and Growth 

VARIABLES DV: Ln(output) at t+1 minus Ln(output) at t 
Change in the number of within-count portfolio  0.011**  
rebalancing from t to t+1 (0.005)  
Change in the number of across-count portfolio   0.013*** 
rebalancing from t to t+1  (0.005) 
Dummy = 1 if university-educated engineer at t 0.103** 0.103** 

(0.041) (0.041) 
Dummy = 1 if merchant board member at t 0.010 0.008 

(0.026) (0.025) 
Logged installed high-end spindles in t, minus 
Logged installed high-end spindles in t-1 

0.014* 0.014* 
(0.007) (0.007) 

Logged installed low-end spindles in t, minus 
Logged installed low-end spindles in t-1 

0.009 0.009 
(0.014) (0.014) 

Logged total output at t -0.298*** -0.297*** 
(0.048) (0.047) 

Constant 2.409*** 2.404*** 
(0.337) (0.332) 

Observations 1,608 1,608 
Semiannual time dummies and firm dummies Included Included 
Number of firms 99 99 
R-squared 0.324 0.326 
Fixed-effect panel estimations. Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. 
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Table 9A. 20-Count Demand Estimation, First Stage 
 

 DV: Logged 20-count price 

Estimation Instrumental 
regression  Placebo test 

Number of across-count portfolio rebalancing (between 17-48 
counts) 

-0.002*  
(0.001)  

Number of across-count portfolio rebalancing (between 17-48 
counts), interacted with mandatory output cuts 

0.032***  
(0.008)  

Number of within-count portfolio rebalancing (between 17-48 
counts)  -0.001 

(0.001) 
Number of within-count portfolio rebalancing (between 17-48 
counts), interacted with mandatory output cuts measure  0.003 

(0.007) 
Constant 4.897*** 4.895*** 

(0.027) (0.028) 
Semiannual time dummies and firm dummies Included Included 
Observations 743 743 
R-squared 0.984 0.983 

Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. Note: mandated output cuts measure does 
not vary within periods and is therefore absorbed by the semi-annual time dummies. 
 
 

Table 9B. 20-Count Demand Estimation, Second Stage 
 

 DV: Logged market share of 20 count 
Instrumented logged 20-count price -7.410 

(7.059) 
Number of across-count portfolio rebalancing (between 
17-48 counts) 

-0.097*** 
(0.028) 

Constant 26.678 
(34.562) 

Semiannual time dummies and firm dummies Included 
Observations 743 
R-squared 0.731 

Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. Instrument: number of across-count portfolio 
rebalancing interacted with mandatory output cuts measure as explained in the main text. 
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Table 9C. Product Upgrade Experiments and Quality of 20 Count Products 
 

  DV: Khandelwal (2010)-style measure of 20-count quality 
VARIABLES (1) (2) (3) (4) 

Estimation OLS IV 

Cumulative number of upgrade experiments at t 0.099*** 0.012    
(0.025) (0.082)    

Cumulative number of upgrade experiments x 
fraction of low-end products at t 

  0.131    
  (0.113)    

Cumulative number of upgrade experiments at t 
(instrumented) 

   0.530*** -0.056 
   (0.061) (0.223) 

Cumulative number of upgrade experiments x 
fraction of low-end products at t (instrumented) 

    0.900*** 
    (0.331) 

Fraction of low-end products in total number of 
products at t 

0.295 0.233 0.848*** 0.362 
(0.301) (0.304) (0.306) (0.378) 

Number of across-count portfolio rebalancing 
(between 17-48 counts) 

-0.161*** -0.159*** -0.170*** -0.167*** 
(0.049) (0.049) (0.045) (0.045) 

Dummy = 1 if university-educated engineer at t 1.004*** 1.013*** 0.811*** 0.812*** 
(0.115) (0.116) (0.114) (0.114) 

Dummy = 1 if merchant board member at t 0.254** 0.236** 0.095 0.009 
(0.110) (0.111) (0.107) (0.111) 

Logged installed high-end spindles in t+1, minus 
Logged installed high-end spindles in t 

0.051 0.048 0.048 0.045 
(0.038) (0.039) (0.040) (0.039) 

Logged installed low-end spindles in t+1, minus 
Logged installed low-end spindles in t 

0.348 0.340 0.278 0.274 
(0.279) (0.279) (0.271) (0.267) 

Firm age -0.018* -0.019* -0.051*** -0.059*** 
(0.010) (0.010) (0.011) (0.012) 

Constant 2.851** 2.934** 2.491* 3.041** 
(1.423) (1.425) (1.412) (1.432) 

Semiannual time dummies Included Included Included Included 
Observations 721 721 721 721 
R-squared 0.618 0.619 0.641 0.645 

Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. “Khandelwal-style” quality measure is 
calculated at the firm-observation level, as the sum of firm and time fixed effects and the residuals from the 
regression of logged market share of 20 count on instrumented logged 20-count price, as detailed in the main text. 
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Table 10. Firm Survival 
Panel A  

Numbers of: Surviving firms Exiting firms; of which: Total    
By acquisition Shut down 

 

Had high-end 
machines 

Yes 19 22 1 42 
No 14 31 18 63 

Total 
 

33 53 19 105 
 
 
Panel B 

 Hazard regression 
 (1) (2) 

Dummy equal to one if had high-end machines -0.466*  
(0.281)  

Dummy equal to one if had high-end machines and mean 
fraction of high-end products between 30 and 70 percent 

 -1.648** 
 (0.745) 

Educated engineer dummy -0.412 -0.714 
(0.314) (0.444) 

Merchant board member dummy -1.815*** -1.814*** 
(0.326) (0.497) 

Firm age 0.249* 0.237 
(0.133) (0.262) 

Constant -2.716*** -2.478*** 
(0.313) (0.674) 

Number of firms 103 42 
Estimated coefficients are reported. Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. 
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